Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil emissions are much-bigger-than-expected component of air pollution

07.06.2005


Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation.



But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed.

Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaeglé, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected.


Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency’s European Remote Sensing 2 satellite.

Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite’s ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family. Other satellite instruments can detect large fires and the resulting emissions also can be measured by the ozone-monitoring experiment, Jaeglé said.

But the satellite also picks up other nitrogen oxide signals not attributable to fuel combustion or burning, and those emissions must come from soil, Jaeglé said.

"We were really amazed that we could see it from space, but because the pulse is so big the satellite can see it," she said.

Soil emissions are seen primarily in equatorial Africa at the beginning of the rainy season, especially in a region called the Sahel, and in the mid-latitudes of the Northern Hemisphere during summer. When the rains come to the Sahel after a six-month dry season, dormant soil bacteria reawaken and begin processing nitrogen. The satellite then detects a sudden pulse of nitrogen oxides, Jaeglé said. Similarly, emissions in the mid-latitudes of the Northern Hemisphere spike during the growing season, spurred by warmer temperatures after a cold winter, but also perhaps magnified by fertilizer use.

"The soil emissions were much larger than we expected," she said. "The biggest areas were the dry topical regions like the Sahel, and in the mid-latitude regions where there is a lot of agriculture."

During summer in North America, Europe and Asia, nitrogen oxides emitted from soil can reach half the emissions from fossil fuel combustion.

"And this is at a time when there are already problems with air pollution," Jaeglé said.

Nitrogen oxides comprise a group of highly reactive gases containing nitrogen and oxygen in varying amounts. Besides producing ozone smog, they help form the dirty brown clouds that often hang over major cities, they contribute to acid rain and they play a role in global climate change.

In addition to equatorial Africa, hot spots for soil emissions include the central plains of the United States; southwestern Europe, primarily the Iberian Peninsula; much of India; and the northern plains of Asia, she said. All of those areas are highly agricultural.

The new research was published in May in Faraday Discussions, a journal of England’s Royal Society of Chemistry. Co-authors are Linda Steinberger of the UW; Randall Martin of Dalhousie University in Halifax, Nova Scotia; and Kelly Chance of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. The work was funded by the National Aeronautics and Space Administration’s New Investigator Program in Earth Science.

Jaeglé noted that agricultural activity is likely to increase in the future, bringing more fertilizer use. As a result, there could also be even greater soil emissions of nitrogen oxides.

"We don’t know how emissions will change, but we now have a way to monitor them from space," she said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>