Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio-tracking associated with ’dramatic shift’ in water vole sex ratio

03.03.2005


Wildlife researchers are being warned that radio-tracking could be affecting the animals they are studying. According to new research published today in the British Ecological Society’s Journal of Applied Ecology, fitting radio-collars to water voles was associated with a "dramatic shift" in the sex ratio of the animals’ offspring, casting doubt on the assumption that radio-tracking does not fundamentally affect the biology of radio-collared water voles.



The water vole (Arvicola terrestris) is an endangered species in the UK, and ecologists Dr Tom Moorhouse and Professor David Macdonald of Oxford University’s Wildlife Conservation Research Unit had been monitoring the size of two populations - one in Norfolk and one Wiltshire - when they noticed a 48% decline in the number of females born at the Norfolk site. At both sites vole numbers had been monitored using small traps baited with apple and carrot during 2002 and 2003, voles being released after counting. However, Moorhouse and Macdonald had also fitted radio-collars to 38 of the voles caught at the Norfolk site for in-depth study of the voles’ movements.

According to Moorhouse and Macdonald: "Our analysis revealed that the most likely cause for the female decline was a shift in the sex ratio of young raised by radio-collared females. This result has implications for conservation research, especially for monitoring water vole populations."


Skewed sex ratios have been reported in stressed and malnourished females of various species, including water voles. The ecologists suggest this could be explained in terms of the local resource competition hypothesis, which predicts that mothers with access to poor resources will produce offspring of the sex most likely to disperse and therefore reduce local competition for resources. "Radio-collars clearly have the potential to cause some stress to water voles, and it is possible that this might stimulate sex-ratio adjustment as part of an evolutionary mechanism mitigating impacts of suboptimal habitats, similar to the sex-ratio bias and stress response in food deprived water voles," they say.

Researchers have long been aware that the techniques they use had the potential to cause unexpected effects, and there have been many studies into the effects of radio-collars. However, this is the first study to show an association between radio-collars and sex ratio, although further work is needed to establish a causal link. According to Moorhouse and Macdonald: "We would expect any such effect to be species-specific, but our results will alert those studying other small mammals to look for similar associations. Our findings are a reminder that the assumption that the use of radio-collars does not fundamentally affect the biology of the subjects always requires careful checking. This study emphasises that the effects of commonplace wildlife marking and tracking techniques may be difficult to detect and yet both important and revealing. Clearly, it is both scientifically and ethically important to be aware of, and to strive to minimise, any such effects."

Lynne Miller | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>