Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern researcher finds missing atmospheric carbon dioxide

02.12.2004



Northeastern environmental scientist finding could improve global warming forecast models

A Northeastern University researcher today announced that he has found that the soil below oak trees exposed to elevated levels of carbon dioxide had significantly higher carbon levels than those exposed to ambient carbon levels. The findings are consistent with the hypothesis that elevated carbon dioxide levels are increasing carbon storage in terrestrial ecosystems and slowing the build-up of carbon dioxide levels in the atmosphere. Carbon dioxide is thought to cause global warming by trapping heat radiated by the Earth.

The research, published in the latest on-line edition of the journal Earth Interactions, represents an important advance in the global warming research. The lead author on the article, “Soil C Accumulation in a White Oak CO2-Enrichment Experiment via Enhanced Root Production,” is Kevin G. Harrison from the department of earth and environmental sciences at Northeastern. Contributors also include Richard J. Norby and Wilfred M. Post from the Oak Ridge National Library in Tennessee and Emily L. Chapp form the University of Hawaii.



In the study, the researchers sought to determine if the mechanism for storing carbon in soil was CO2 fertilization, the process by which plants grow better when exposed to high CO2 levels, and to investigate the extent to which CO2 fertilization could be increasing the amount of carbon stored in soil under white oak trees. The researchers studied the soil below white oak trees in the temperate zone over four growing seasons and found that the soil below trees exposed to elevated levels of CO2 had an average of 14% more carbon.

“Researchers have long been puzzled by observations that show that carbon dioxide levels in the atmosphere are increasing more slowly than expected.,” said Harrison. “This conundrum has hindered predictions of future carbon dioxide levels and, in turn, estimates of future global warming. By being able to demonstrate a substantial average increase in the carbon below these oak trees, we have potentially found the solution to better global warming forecasting. However, further research is needed in other ecosystems to see if they show similar responses to elevated carbon dioxide levels.”

Steve Sylven | EurekAlert!
Further information:
http://www.neu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>