Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hypoxic event found off Oregon coast

10.08.2004


For the second time in three years, a hypoxic "dead zone" has formed off the central Oregon Coast. It’s killing fish, crabs and other marine life and leading researchers to believe that a fundamental change may be taking place in ocean conditions in the northern Pacific Ocean.



The event appears similar to one in 2002, when an area of ocean water with low oxygen content formed in the nearshore Oregon coast between Newport and Florence, causing a massive die-off of fish and invertebrate marine species. The fact that it’s happening again is triggering concern among marine scientists.

In 2002, the dead zone appeared to be a one-time anomaly, an odd combination of climate, winds and upwelling patterns that led to a hypoxic event – a situation in which the oxygen level was so low it could not support most marine life – which had not been seen in the region’s recent history.


But continued research has shown that the same thing almost occurred last year and is now happening in full force again this year. Dissolved oxygen levels are a great deal lower than those seen in the past 40 years. This is a disturbing trend with an unknown cause that scientists now say may reflect a major change in ocean circulation patterns, with serious impacts on marine biology.

"When you see the same thing happening with this regularity, it suggests that something is fundamentally different," said Jane Lubchenco, the Valley Professor of Marine Biology at Oregon State University. "This is a significant departure from normal conditions and you have to wonder what’s going on. This ocean system has changed, and we’re paying attention."

The issue is sufficiently important that OSU scientists from the Partnership for Interdisciplinary Studies of Coastal Oceans and the College of Oceanic and Atmospheric Sciences have joined forces in intensive research with experts from the Oregon Department of Fish and Wildlife, National Oceanic and Atmospheric Administration, and the University of Washington.

Much of the work has been done with the R/V Elakha, a marine research vessel operated by OSU.

"We monitored this situation last year, when another mass of low oxygen water formed but was pushed off the continental shelf by shifting winds and caused little damage," said Francis Chan, an OSU research associate with PISCO. "Then two months ago, we saw the early signs of another hypoxic event, and we believe we’re now in the process of another dead zone event."

In the 2002 event, water at depths of 30-50 meters, within a mile or two of the shoreline, had dissolved oxygen levels in the range of 0.5 to 1 milliliters per liter – whereas a normal reading would be about four times that high. Any dissolved oxygen level below 1.4 milliliters per liter is considered hypoxic, capable of killing a wide range of fish, crabs, and other marine species that literally suffocate.

"The figures in 2002 were just off the charts compared to the historical norm, and already this year we have had some readings in that same range," Chan said. "One recent measurement taken at a 30 meter depth station just 1.2 miles off Newport found dissolved oxygen at 0.8 milliliters per liter. Further offshore and to the south, we’ve found oxygen levels in deeper areas of the shelf to be as low as anything we saw in 2002."

In the current event, Chan said, the "dead zone" of low-oxygen water appears to be "sloshing back and forth" between deeper water and, more recently, into shallower, nearshore water. What impact this will have on marine life is unknown at this point. Some fish and crab kills have already been documented on beach and intertidal areas, but other dead animals may also be washed out to the deep sea. Last week, hundreds of dead Dungeness crabs and molts were found in tidepools south of Yachats. Area residents have also reported dead fish on some beaches.

"Studies are underway with a remotely-operated submersible vehicle to take video and measurements of the ocean floor environment and better document the current effects of this hypoxic event," said Hal Weeks of the ODFW Marine Resources Program.

These hypoxic events are intimately connected to upwelling, the researchers say, which is the movement of cold, nutrient rich water to the surface near the ocean shore. Normally, upwelling is valuable - the nutrients it brings up are critical for much marine life and key to productive fisheries.

But in the hypoxic events, the upwelled water is coming from the sub-Arctic, and is even colder, more nutrient rich and lower in oxygen than usual. Upwelling-favorable summer winds bring this water closer to shore. And in this situation, the high nutrient waters support even more growth than usual of microscopic marine plants, which ultimately sink and decay, leading to consumption of even more of the remaining oxygen in the water.

"Hypoxic conditions such as this have been documented in other nearshore upwelling ocean regions of the world," said Jack Barth, a professor of oceanography at OSU, "but never on the central Oregon coast."

"This system is normally healthy and productive," Lubchenco said. "But a change in ocean circulation appears to be shifting the system closer to a tipping point where the right conditions can kick it over the edge and into an hypoxia state. This coastal ecosystem off Oregon seems to be changing in a way we have never seen."

Scientific data to document the changing ocean conditions only goes back a few decades at best. But anecdotal evidence from regional fisherman and other coastal residents also suggests that events such as the one that occurred in 2002 have no recent precedent, the researchers said.

"While there is no obvious connection between the hypoxic events and the El Niño/La Niña cycle, the influence of the longer term Pacific Decadal Oscillation can’t be ruled out at this point," said Barth.

The possibility that other climatic forces such as global warming could be causing the change in ocean circulation – which sets the initial conditions for the dead zone - is possible but not certain, the researchers said. A key focus of continued research will be not only to determine the extent of these hypoxic events and the marine mortality associated with them, but to identify the underlying cause of the events, the researchers said.

Jane Lubchenco | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>