Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Toxic Sampling Kit Measures Contaminated Land

23.07.2004


A University of Surrey spin-out company, Cybersense Biosystems Ltd, has developed a portable toxicity screening device. The ROTAS system can be literally wheeled on to a brown field site and carry out field-based screening of contaminated soils and waters and results can be read within minutes. It is especially relevant with the Government’s vision to see more contaminated industrial land made safe for housing.

“The key benefit of ROTAS is its ability to dramatically reduce the cost of site remediation by providing reliable data on site quickly enough that it can be used to influence the management of the project.” says the inventor Dr Tim Hart, Cybersense. Using marine bacteria that naturally emit light (bioluminesce) the Rapid On-Site Toxicity Audit System (ROTAS) is an environmentally sustainable method of analysing toxicity when compared to classic tests on higher organisms. When in a state of metabolic health the bacteria glow more but in the presence of increasing toxicity they glow less. (photo attached) This powerful new tool based on a well recognised technology allows more rapid, cost-effective and accurate site characterisation and monitoring work. It has been designed to complement, not to replace chemical analysis.

The information provided by ROTAS is much more powerful than can be obtained by chemical analysis alone and results from its use provide information on the biological effects of contaminants, no matter how complex and ill-defined the pollution is, or what synergistic interactions take place between toxins. The ROTAS system has been specially designed for the analysis of soil samples and is capable of sampling soil in the field in minutes in a very simple to use, disposable piece of kit.



The test can be used to measure the toxicity of aqueous samples, such as waste effluent, groundwater or leachate, where it provides a higher throughput of samples than other systems on the market. The results of the test are expressed as a percent luminescence relative to the unexposed control, so low values indicate high levels of toxicity. The test can be calibrated to on-site target clean-up levels or other screening criteria to provide a pass/fail test, or relative toxicities can be compared between soil samples on a site.

This was the first investment from the University of Surrey Seed Fund, of £100,000 in September 2001. Since then, the company has been through three private investment rounds including a further top-up from the Seed Fund, and also raised some £1m public grant funding,.

Anthony Woolhouse, Head of Ventures at the University of Surrey said: “I am absolutely delighted that this project has moved on so positively in such a relatively short space of time. We like to back success at Surrey and we were pleased to co-invest with business angels last year. Cybersense is a really good example of an innovative idea being turned into a an exciting business with real growth opportunity.!”

Liz Morgan-Lewis | alfa
Further information:
http://www.surrey.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>