Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Green’ chiller technology rolled out for Earth day

22.04.2004


Penn State acousticians put their new prototype for a compact chiller, based on "green" technology that substitutes sound waves for environment-damaging chemical refrigerants, on first public display in conjunction with Earth Day in New York City.



The roll-out took place at a Ben & Jerry’s scoop shop in New York City where the chiller was hooked up to a standard ice cream sales freezer cabinet and successfully kept the creamy merchandise in delicious condition. Ben & Jerry’s partnered with Penn State, with financial and scientific support from its parent company, Unilever, to develop a more environmentally friendly prototype freezer cabinet.

Dr. Steven Garrett, the United Technologies Corporation professor of acoustics at Penn State who leads the thermoacoustic chiller research team, says, "We expect this new compact approach to thermoacoustic chillers to be used first in applications that are difficult for chemical refrigeration, such as beverage vending machines, cooling microprocessor chips in computers and, of course, ice cream sales cabinets.


"If chemical refrigerants are banned due to global warming effects, then it will be more likely that thermoacoustic refrigeration will start appearing in kitchens and home air conditioners if cheap manufacturing methods for these products can be developed," he adds. The team that developed the new thermoacoustic chiller at Penn State’s Applied Research Laboratory, included Garrett, Dr. Matthew Poese, who in his recent master’s and doctoral degree work under Garrett’s direction helped lead the way to the new chiller, and Robert W. Smith, ARL research engineer and co-inventor, who has worked with Garrett’s group on thermoacoustic projects for the past eight years.

Garrett explains that conventional refrigeration uses chemicals, such as CFCs and HFCs that absorb heat when they turn from liquid to vapor. The chemicals that work best also damage the atmosphere. In 1995, the Montreal Protocols instituted a worldwide ban on CFC production because of damage to the ozone layer that protects Earth from harmful radiation that causes skin cancer and cataracts. HFCs were introduced to replace CFCs but they contribute to global warming.

The Penn State thermoacoustic chiller uses helium gas instead of chemical refrigerants. Helium, which is used to keep birthday party balloons aloft, doesn’t burn, explode or combine with other chemicals. If released into the atmosphere, helium drifts harmlessly into outer space.

The Penn State chiller takes advantage of helium’s inertness and high thermal conductivity as well as the fact that a sound wave is a rapid succession of compressions and expansions of the gas that carries it.

"When a gas is compressed, its heats up. When it expands, it cools down," Garrett explains. "In thermoacoustics, we arrange the compressions and expansions so that all of the heat of compression is deposited at one end of the system where it can be exhausted into the room. We arrange for all of the expansions to occur at a different location where the cooling due to expansion can be used to refrigerate ice cream, for example. Our compact unit also makes this happen with no mechanical valves or cams or linkages."

The thermoacoustic chiller is patented by Penn State and negotiations for a license are in progress with a start-up company formed to commercialize the technology.

Barbara Hale | Penn State
Further information:
http://live.psu.edu/story/6526

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>