Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bird in a tree for biodiversity

11.11.2003


Fooling with Mother Nature by fragmenting long-established land parcels can have unanticipated and punishing consequences, leaving lasting damage to the environment.



A report published in the Proceedings of the National Academy of Sciences (online early edition the week of Nov. 10) by two University of Illinois at Chicago biologists documents such harm caused to a tree native to Tanzania’s East Usambara Mountains where habitat fragmentation has broken a mutual relationship with the birds that distribute the seed.

The findings may serve as a warning of more widespread environmental danger under similar circumstances.


UIC doctoral candidate Norbert Cordeiro and professor of biological sciences Henry Howe focused their study on the Leptonychia tree (Leptonychia usambarensis), called the "zonozono" locally in the Swahili language. The tree is endemic to the Eastern Arc biodiversity hotspot of Kenya and Tanzania.

Cordeiro, who is also a research associate with the Tanzania Wildlife Research Institute, chose this critically threatened location to compare how the trees fared in larger continuous tracts of virgin forest with those still growing in smaller parcels fragmented by farming and old former colonial plantations.

The tree’s survival depends largely on certain bird species to eat and disperse seed. But in the broken parcels with few trees left, the birds were rare or absent. Seed fell to the ground but didn’t regenerate as well as in continuous forest tracts. The bird-tree dependency that evolved in this ancient forest, isolated from other rainforests for 10 million years, was broken by human development in just the past century, jeopardizing the Leptonychia’s survival.

"It’s been shown that land fragmentation has had impacts on animal species, but there’s been little study to see if relationships between plants and animals are affected too," said Cordeiro. "We’ve shown here that’s precisely the case. And if other animals that depend on certain trees for food are affected by habitat fragmentation, you could end up with a cascading effect of extinction of trees and seed dispersers, such as mammals and birds."

"This study is the best demonstration that this actually works in the context of forest fragmentation," said Howe. "There’s a direct relationship between the number of species and the area of a habitat patch. Some believe that as habitat patches get smaller and smaller, the extinction of species is random. But this study shows it is not at all random. It can be highly dependent and much more rapid than random extinction. In fact, forest fragmentation may even accelerate extinction of common species."

"We showed that a very common tree can be adversely affected," Howe added, "which is a reason why we suggest severing these relationships can accelerate extinction, even of common species."

The study began in 2000 and is ongoing, in collaboration with a team of Tanzanian researchers. While numerous studies on the effects of fragmentation have been done over recent years in the Americas, Cordeiro and Howe’s study is one of few that have been done in Africa.

"The focus in Africa has been on preservation of larger, charismatic mammals like elephants and rhinos," said Cordeiro. "But small birds and trees are rarely studied in Africa."

Howe warns that findings such as this serve as a warning about the consequences of rapid habitat fragmentation.

"I think what we see in the wake of the Industrial Revolution, the spread of intensive agriculture and the fragmentation and elimination of forests, is what could be an even faster series of extinctions, measured only in a couple of centuries, in which an awful lot of the world’s flora and fauna are lost. All of these species potentially are of use to people. They help stabilize the natural environment, the climate, retain water and soil.

"We can guess that their loss will be felt," Howe warned. "Ultimately, human actions may be causing the equivalent of a large meteorite impact."


Major funding for the study came from the National Science Foundation and the Wildlife Conservation Society.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>