Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bird in a tree for biodiversity

11.11.2003


Fooling with Mother Nature by fragmenting long-established land parcels can have unanticipated and punishing consequences, leaving lasting damage to the environment.



A report published in the Proceedings of the National Academy of Sciences (online early edition the week of Nov. 10) by two University of Illinois at Chicago biologists documents such harm caused to a tree native to Tanzania’s East Usambara Mountains where habitat fragmentation has broken a mutual relationship with the birds that distribute the seed.

The findings may serve as a warning of more widespread environmental danger under similar circumstances.


UIC doctoral candidate Norbert Cordeiro and professor of biological sciences Henry Howe focused their study on the Leptonychia tree (Leptonychia usambarensis), called the "zonozono" locally in the Swahili language. The tree is endemic to the Eastern Arc biodiversity hotspot of Kenya and Tanzania.

Cordeiro, who is also a research associate with the Tanzania Wildlife Research Institute, chose this critically threatened location to compare how the trees fared in larger continuous tracts of virgin forest with those still growing in smaller parcels fragmented by farming and old former colonial plantations.

The tree’s survival depends largely on certain bird species to eat and disperse seed. But in the broken parcels with few trees left, the birds were rare or absent. Seed fell to the ground but didn’t regenerate as well as in continuous forest tracts. The bird-tree dependency that evolved in this ancient forest, isolated from other rainforests for 10 million years, was broken by human development in just the past century, jeopardizing the Leptonychia’s survival.

"It’s been shown that land fragmentation has had impacts on animal species, but there’s been little study to see if relationships between plants and animals are affected too," said Cordeiro. "We’ve shown here that’s precisely the case. And if other animals that depend on certain trees for food are affected by habitat fragmentation, you could end up with a cascading effect of extinction of trees and seed dispersers, such as mammals and birds."

"This study is the best demonstration that this actually works in the context of forest fragmentation," said Howe. "There’s a direct relationship between the number of species and the area of a habitat patch. Some believe that as habitat patches get smaller and smaller, the extinction of species is random. But this study shows it is not at all random. It can be highly dependent and much more rapid than random extinction. In fact, forest fragmentation may even accelerate extinction of common species."

"We showed that a very common tree can be adversely affected," Howe added, "which is a reason why we suggest severing these relationships can accelerate extinction, even of common species."

The study began in 2000 and is ongoing, in collaboration with a team of Tanzanian researchers. While numerous studies on the effects of fragmentation have been done over recent years in the Americas, Cordeiro and Howe’s study is one of few that have been done in Africa.

"The focus in Africa has been on preservation of larger, charismatic mammals like elephants and rhinos," said Cordeiro. "But small birds and trees are rarely studied in Africa."

Howe warns that findings such as this serve as a warning about the consequences of rapid habitat fragmentation.

"I think what we see in the wake of the Industrial Revolution, the spread of intensive agriculture and the fragmentation and elimination of forests, is what could be an even faster series of extinctions, measured only in a couple of centuries, in which an awful lot of the world’s flora and fauna are lost. All of these species potentially are of use to people. They help stabilize the natural environment, the climate, retain water and soil.

"We can guess that their loss will be felt," Howe warned. "Ultimately, human actions may be causing the equivalent of a large meteorite impact."


Major funding for the study came from the National Science Foundation and the Wildlife Conservation Society.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>