Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A bird in a tree for biodiversity


Fooling with Mother Nature by fragmenting long-established land parcels can have unanticipated and punishing consequences, leaving lasting damage to the environment.

A report published in the Proceedings of the National Academy of Sciences (online early edition the week of Nov. 10) by two University of Illinois at Chicago biologists documents such harm caused to a tree native to Tanzania’s East Usambara Mountains where habitat fragmentation has broken a mutual relationship with the birds that distribute the seed.

The findings may serve as a warning of more widespread environmental danger under similar circumstances.

UIC doctoral candidate Norbert Cordeiro and professor of biological sciences Henry Howe focused their study on the Leptonychia tree (Leptonychia usambarensis), called the "zonozono" locally in the Swahili language. The tree is endemic to the Eastern Arc biodiversity hotspot of Kenya and Tanzania.

Cordeiro, who is also a research associate with the Tanzania Wildlife Research Institute, chose this critically threatened location to compare how the trees fared in larger continuous tracts of virgin forest with those still growing in smaller parcels fragmented by farming and old former colonial plantations.

The tree’s survival depends largely on certain bird species to eat and disperse seed. But in the broken parcels with few trees left, the birds were rare or absent. Seed fell to the ground but didn’t regenerate as well as in continuous forest tracts. The bird-tree dependency that evolved in this ancient forest, isolated from other rainforests for 10 million years, was broken by human development in just the past century, jeopardizing the Leptonychia’s survival.

"It’s been shown that land fragmentation has had impacts on animal species, but there’s been little study to see if relationships between plants and animals are affected too," said Cordeiro. "We’ve shown here that’s precisely the case. And if other animals that depend on certain trees for food are affected by habitat fragmentation, you could end up with a cascading effect of extinction of trees and seed dispersers, such as mammals and birds."

"This study is the best demonstration that this actually works in the context of forest fragmentation," said Howe. "There’s a direct relationship between the number of species and the area of a habitat patch. Some believe that as habitat patches get smaller and smaller, the extinction of species is random. But this study shows it is not at all random. It can be highly dependent and much more rapid than random extinction. In fact, forest fragmentation may even accelerate extinction of common species."

"We showed that a very common tree can be adversely affected," Howe added, "which is a reason why we suggest severing these relationships can accelerate extinction, even of common species."

The study began in 2000 and is ongoing, in collaboration with a team of Tanzanian researchers. While numerous studies on the effects of fragmentation have been done over recent years in the Americas, Cordeiro and Howe’s study is one of few that have been done in Africa.

"The focus in Africa has been on preservation of larger, charismatic mammals like elephants and rhinos," said Cordeiro. "But small birds and trees are rarely studied in Africa."

Howe warns that findings such as this serve as a warning about the consequences of rapid habitat fragmentation.

"I think what we see in the wake of the Industrial Revolution, the spread of intensive agriculture and the fragmentation and elimination of forests, is what could be an even faster series of extinctions, measured only in a couple of centuries, in which an awful lot of the world’s flora and fauna are lost. All of these species potentially are of use to people. They help stabilize the natural environment, the climate, retain water and soil.

"We can guess that their loss will be felt," Howe warned. "Ultimately, human actions may be causing the equivalent of a large meteorite impact."

Major funding for the study came from the National Science Foundation and the Wildlife Conservation Society.

Paul Francuch | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>