Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Golfing toward a greener environment

10.11.2003


As mountains of scrap tires continue to rise above the landscape, researchers at the University of Wisconsin-Madison have found an environmentally friendly use for them: grind them up and place the rubber bits beneath golf course greens.


In a paper accepted for publication in the journal Waste Management, the researchers show that these ground tires can absorb excess chemicals from fertilizers and pesticides, preventing them from leaching into groundwater and contaminating the surrounding environment.

Golf courses are designed to improve playability, not environmental impact, says Jae (Jim) Park, a professor of civil and environmental engineering at UW-Madison and an avid golfer with a 6 handicap. But, as an environmentally conscientious person, Park is also aware of the unintentional side effects of the fertilizers and pesticides applied to the golf-course greens to keep them looking, well, green. These products contain chemicals that trickle into groundwater sources and contaminate the surrounding environment, he says.

"Because many greens are built near groundwater levels or wetlands," explains Park, "it is vital to consider the mitigation of environmental contamination caused by the pesticides and fertilizers applied to golf courses."



Used tires could provide a barrier, according to the new research led by Park.

The U.S. Environmental Protective Agency estimates that Americans discarded an estimated 273 million scrap tires in 2001, with only about 33 million being retread or recapped for additional use. Due to state regulations, most of these old tires were stockpiled, rather than dumped in landfills. Park says that storing this waste material in such a way creates several hazards: they collect rainwater, create breeding grounds for mosquitoes, and have a tendency to catch on fire.

"Tires are a waste material," says Park, "and we need to have safe ways to dispose of them."

Researchers throughout the world have been searching for ways to reuse tires that are accumulating in stockpiles. Civil engineers have utilized tires, either in scrap or ground-up form, to develop tire derived fuel, artificial ocean reefs, bumpers, playground equipment, asphalt additives that extend the life of roadways and shock-absorbent playing fields. Ground-up rubber products, including the soles from sneakers, can be found beneath the turfgrass at many athletic stadiums, including Camp Randall Stadium at UW-Madison.

Park has been studying the characteristics of tires for the last 12 years. In that time, he and his colleagues have shown that tire chips - ground-up pieces of this rubber material - can absorb harmful organic compounds from the environment. The findings, he says, suggest that they could be used as landfill barriers to prevent the leaching of pollutants into the ground.

Tire chips’ ability to block these pollutants led Park, civil and environmental engineering graduate student Bob Lisi, and horticulture professor John Stier to consider another application: placing ground-up rubber beneath chemically treated golf-course greens.

Park says just under 1,000 pounds of pesticides are applied yearly to a single golf course. He adds that there are more than 23,000 golf courses in the United States.

In the latest study, he and his team found that tire chips can absorb nitrate - one of the main chemicals in fertilizers. Park says studies show that infants who drink water containing excess amounts of nitrate can become seriously ill and, left untreated, could die.

For the study, the researchers inserted tire chips just six to nine millimeters in diameter between layers of sand and peat root mix and gravel, both of which are commonly found beneath golf-green turf. The rubber layer was either five or 10 centimeters thick. The researchers studied the role of these layers in the lab, as well as on the field in three-by-three meter plots at the O.J. Noer Turfgrass Research and Education Facility in Madison, Wis. While the field sites were seeded with a grass, the lab samples were left bare.

To test the ability of the tire chips to absorb chemicals, the Wisconsin scientists applied water spiked with different concentrations of nitrate to each sample. Then, they measured the concentration that seeped out of the bottom gravel layer.

The main goal of the experiments, says Park, was to determine if the rubber layers would filter out chemical compounds carried in the water without affecting the health or quality of the grass.

In all experiments, the researchers found that the rubber layers did absorb the compounds. Compared to the control samples, the lab experiments with the five- and 10-centimeter layers of tire chips released 17.9 and 21.7 percent less nitrate, respectively, after one year of testing. During this time, the five- and 10-centimeter rubber layers in the field released 23 and 58.6 percent less nitrate, respectively.

Based on the experiments, Park says, "Excess amounts of fertilizer will be absorbed by ground tires. They’ll be trapped right there instead of traveling." Over time, he adds, soil microbes will remove the nitrate from the rubber layer, which could remain intact for last years.

While some environmentalists may be concerned that chemicals released from the tires will percolate into the environment, Park says numerous scientific studies show that the amount released is minimal compared to the amount the tires can trap.

"We’ve proved that is not an issue," he says. "Some contaminants have been reported, but the levels are so low."

As part of the current study, Park and his colleagues visually assessed the quality of the field plots from seed germination to the end of the sampling period. Turfgrass quality, color, density or germination rate did not appear to be affected, he says. He adds that about one year later there was no significant difference in grass quality or density among the three putting green profiles, suggesting the rubber layer did not alter the turfgrass.

Besides absorbing chemicals harmful to the environment, Park says the characteristics of tire chips make them even more attractive: they’re light weight, allowing for easier transportation and installation; they absorb shock, possibly alleviating foot pains of golfers; and they trap heat, promoting turf and root growth longer into autumn and earlier in spring.

But, above all, he says, "The technology reuses a waste material that’s hard to dispose while it protects the environment." Park estimates that about 72,000 tires would be needed to include a 10-centimeter layer of tire chips for an 18-hole golf course - a number that could chip away at one of this country’s major waste problems.


Emily Carlson 608-262-9772, emilycarlson@wisc.edu

Jae (Jim) Park | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>