Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bug to tackle pollution

10.10.2003


A new, all-natural, pollutant-busting microbe has been discovered by scientists in Germany. Research published in the October 2003 issue of Microbiology, a Society for General Microbiology journal, describes a new strain of bacterium, which could be used in the near future to clean up polluted land.



Over the years, many harsh and highly toxic chemicals have built-up in the environment. Dr Rapp and his colleagues at the National Research Centre for Biotechnology in Braunschweig, Germany, have found the first bacterium that has two essential qualities that allow it to cleanse contaminated soil of some of these chemicals.

“For a microbe, two characteristics are important for de-contamination of land,” explains Dr Peter Rapp, “not only the ability to break down the polluting chemicals, but also, the ability to actually access the chemicals in the first place”. Tests carried out show that a species of Rhodococcus bacteria, called strain MS11, not only breaks down a wide selection of pollutants, but also makes its own detergent to help it access them.


Some bacteria are already known to naturally break down pollutants in order to use them as a source of food, but unfortunately the process in soil is slow. “The problem is that chemicals stick to the particles of soil or hide inside hollows, and this makes the job of cleaning land very difficult,” explained Dr Rapp. “The bugs can’t get at the pollutants, which means that they remain in the soil for decades, slowly seeping into our water supplies”.

If they are helped, these bacteria can be used to clean up polluted soil. By adding large amounts of detergent first, the bacteria can gain access to the chemicals. Unfortunately, the use of detergents to help clean soil is limited, because it costs so much to manufacture the amounts of detergent needed for large areas of land.

“The fact that strain MS11 can degrade a wide range of chemicals, as well as making its own detergent, makes this bacterium perfect for bioremediation of sites polluted for years, or even decades, with unpleasant chemicals” explained Dr Rapp. “A further benefit is that strain MS11 has not been created in a lab, but was isolated naturally from the environment, and so there will not be the issue of transfer of dangerous genes that is associated with genetically modified organisms”.

Strain MS11 has been found to be particularly good at breaking down chlorinated benzenes. These chemicals are widely used in industry in the production of herbicides and pesticides, as well as for dissolving such materials as oils and rubber. And, although some bacteria are already known to break down chlorinated benzenes, none have the added ability to make their own detergent to help them do this.

Chlorinated benzenes are known to cause many serious health problems ranging from disorders of the immune system to harmful effects on the liver, kidney, thyroid and lung.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>