Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bug to tackle pollution

10.10.2003


A new, all-natural, pollutant-busting microbe has been discovered by scientists in Germany. Research published in the October 2003 issue of Microbiology, a Society for General Microbiology journal, describes a new strain of bacterium, which could be used in the near future to clean up polluted land.



Over the years, many harsh and highly toxic chemicals have built-up in the environment. Dr Rapp and his colleagues at the National Research Centre for Biotechnology in Braunschweig, Germany, have found the first bacterium that has two essential qualities that allow it to cleanse contaminated soil of some of these chemicals.

“For a microbe, two characteristics are important for de-contamination of land,” explains Dr Peter Rapp, “not only the ability to break down the polluting chemicals, but also, the ability to actually access the chemicals in the first place”. Tests carried out show that a species of Rhodococcus bacteria, called strain MS11, not only breaks down a wide selection of pollutants, but also makes its own detergent to help it access them.


Some bacteria are already known to naturally break down pollutants in order to use them as a source of food, but unfortunately the process in soil is slow. “The problem is that chemicals stick to the particles of soil or hide inside hollows, and this makes the job of cleaning land very difficult,” explained Dr Rapp. “The bugs can’t get at the pollutants, which means that they remain in the soil for decades, slowly seeping into our water supplies”.

If they are helped, these bacteria can be used to clean up polluted soil. By adding large amounts of detergent first, the bacteria can gain access to the chemicals. Unfortunately, the use of detergents to help clean soil is limited, because it costs so much to manufacture the amounts of detergent needed for large areas of land.

“The fact that strain MS11 can degrade a wide range of chemicals, as well as making its own detergent, makes this bacterium perfect for bioremediation of sites polluted for years, or even decades, with unpleasant chemicals” explained Dr Rapp. “A further benefit is that strain MS11 has not been created in a lab, but was isolated naturally from the environment, and so there will not be the issue of transfer of dangerous genes that is associated with genetically modified organisms”.

Strain MS11 has been found to be particularly good at breaking down chlorinated benzenes. These chemicals are widely used in industry in the production of herbicides and pesticides, as well as for dissolving such materials as oils and rubber. And, although some bacteria are already known to break down chlorinated benzenes, none have the added ability to make their own detergent to help them do this.

Chlorinated benzenes are known to cause many serious health problems ranging from disorders of the immune system to harmful effects on the liver, kidney, thyroid and lung.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>