Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bug to tackle pollution

10.10.2003


A new, all-natural, pollutant-busting microbe has been discovered by scientists in Germany. Research published in the October 2003 issue of Microbiology, a Society for General Microbiology journal, describes a new strain of bacterium, which could be used in the near future to clean up polluted land.



Over the years, many harsh and highly toxic chemicals have built-up in the environment. Dr Rapp and his colleagues at the National Research Centre for Biotechnology in Braunschweig, Germany, have found the first bacterium that has two essential qualities that allow it to cleanse contaminated soil of some of these chemicals.

“For a microbe, two characteristics are important for de-contamination of land,” explains Dr Peter Rapp, “not only the ability to break down the polluting chemicals, but also, the ability to actually access the chemicals in the first place”. Tests carried out show that a species of Rhodococcus bacteria, called strain MS11, not only breaks down a wide selection of pollutants, but also makes its own detergent to help it access them.


Some bacteria are already known to naturally break down pollutants in order to use them as a source of food, but unfortunately the process in soil is slow. “The problem is that chemicals stick to the particles of soil or hide inside hollows, and this makes the job of cleaning land very difficult,” explained Dr Rapp. “The bugs can’t get at the pollutants, which means that they remain in the soil for decades, slowly seeping into our water supplies”.

If they are helped, these bacteria can be used to clean up polluted soil. By adding large amounts of detergent first, the bacteria can gain access to the chemicals. Unfortunately, the use of detergents to help clean soil is limited, because it costs so much to manufacture the amounts of detergent needed for large areas of land.

“The fact that strain MS11 can degrade a wide range of chemicals, as well as making its own detergent, makes this bacterium perfect for bioremediation of sites polluted for years, or even decades, with unpleasant chemicals” explained Dr Rapp. “A further benefit is that strain MS11 has not been created in a lab, but was isolated naturally from the environment, and so there will not be the issue of transfer of dangerous genes that is associated with genetically modified organisms”.

Strain MS11 has been found to be particularly good at breaking down chlorinated benzenes. These chemicals are widely used in industry in the production of herbicides and pesticides, as well as for dissolving such materials as oils and rubber. And, although some bacteria are already known to break down chlorinated benzenes, none have the added ability to make their own detergent to help them do this.

Chlorinated benzenes are known to cause many serious health problems ranging from disorders of the immune system to harmful effects on the liver, kidney, thyroid and lung.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>