Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers use transgenic trees to help clean up toxic waste site

11.09.2003


Can genetically engineered cottonwood trees clean up a site contaminated with toxic mercury? A team of researchers from the University of Georgia - in the first such field test ever done with trees - is about to find out.



The results could make clearer the future of phytoremediation - a technique of using trees, grasses and other plants to remove hazardous materials from the soil. UGA scientists and city officials in Danbury, Conn., planted on July 16 some 60 cottonwoods with a special gene at the site of a 19th-century hat factory in that northeastern city.

"We hope to see a significant difference in the levels of mercury in the soil within 18 months, perhaps as much as a twofold reduction," said Richard Meagher, professor of genetics at UGA.


The field test is a collaboration between UGA, Western Connecticut State University, Applied PhytoGenetics, Inc., of Athens and the City of Danbury.

While the technology now being used in Danbury does not apply to all sites, mercury pollution is a pervasive problem in Georgia as it is elsewhere. The site of a former chemical factory near Brunswick, for example, is polluted with mercury and other toxic chemicals. Mercury contamination has been reported around the sites of former gold mines in north Georgia, and advisories have been issued during the past decade for mercury-contaminated fish in more than 80 streams, lakes and creeks in the state.

Meagher’s team did the first-ever field trial of a genetically engineered plant to sequester mercury when it grew transgenic tobacco in a New Jersey field trial in 2001, but this is the first such trial using trees, whose larger root systems and year-round life cycle makes them better candidates for long-term cleaning of polluted soil.

Phytoremediation is a relatively new field and one gaining international interest. A team of photographers working for National Geographic, for instance, recently spent considerable time with Meagher capturing on film his work as part of a four-part documentary that will be aired some time next winter.

Meagher has for more than a decade been a pioneer in phytoremediation, and he was the first to demonstrate that a gene called merA can be inserted into plants and used to detoxify mercury in the environment. While no plant can break mercury down, since it is an element, less toxic forms can be created, and that has been the goal of Meagher’s lab - to find ways to let plants or trees grow on polluted sites, draw such heavy metals as mercury into the plants themselves and then either transpire the much less toxic forms of the metal into the air where they are quickly diffused or trap the metal aboveground for later harvest.

The project with Danbury came about because Danbury’s environmental coordinator, Jack Kozuchowski, had in 1977 published an early study that showed how native plants could transfer mercury from contaminated soils into the atmosphere. Kozuchowski, aware of Meagher’s work, convinced officials in Danbury that the so-called Barnum Court site in that town would be a perfect site for a field trial of the genetically engineered trees that Meagher and his collaborator Scott Merkle developed.

The city was awarded a grant of some $55,162 from the Environmental Protection Agency to explore use of the technology, and the trial was set up - though most costs for the work are being born by those involved in it.

"It is our hope that the research will lead to a cleansing of the Barnum Court property so the city can transfer the property for development," said Mark Boughton, mayor of Danbury.

Meagher’s mercury phytoremediation technology is exclusively licensed to Applied PhytoGenetics, or APGEN as it is called, and that Athens company has been instrumental in helping set up the field trial. (Meagher is a consultant to and cofounder of APGEN.)

Postdoctoral associate Andrew Heaton of Meagher’s lab and one other of Meagher’s students traveled to Danbury in July to supervise planting the genetically engineered trees on the site in enclosed plastic containers buried on the site.

Because the mercury on the site ranges, depending on location, from five to more than 300 parts per million, trials were set up to measure the effects of the cottonwood trees on progressively more polluted samples of soil. Forty-five plots, most planted with four trees each, are located on the site, which is in a mixed-use urban area and whose total area is less than an acre. (Some 15 plots have four merA trees, 15 are nonengineered or "wild-type" trees and 15 received no trees at all, so there are 120 trees in the field test.)

The form of mercury at the Danbury site is ionic mercury, a species that can be sequestered and transformed into less toxic metallic mercury in the transgenic trees and then transpired into the atmosphere. (Several forms of mercury were used in hat-making in the 19th century, but their toxic effects often sickened workers and led to the phrase "mad hatter," which described the process of neurological degeneration that came from working with the metal. In this part of New England, the symptoms of mercury poisoning were called the "Danbury shakes.")

Meagher’s lab actually has two genes that can effect phytoremediation, merA and merB, but since the merA is active on ionic mercury, the cottonwoods trees chosen for the Danbury trial express the merA gene.

"This is a field test, not a cleanup," said Meagher. "And we will be measuring mercury in both the soil and the trees to see just how much success we have in reducing the mercury levels in the soil. We are very optimistic that this technology will work."

While the trees at the site will have to be watered, the costs of that pale in comparison to traditional clean-up methods - digging up the polluted soil and hauling it off for storage at another site, possibly greater than $1 million.

A team of researchers from Western Connecticut State University will be studying the role of soil microorganisms in the potential clean-up of mercury on the site. According to the City of Danbury, the field test will run through the 2004 growing season, and if results are positive, genetically engineered cottonwood trees will be used to clean the whole site.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>