Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic force microscope used to measure how well live bacteria stick

10.09.2003


Goal is to create better filters



Virginia Tech researchers are using a modified form of atomic force microscopy (AFM) to observe at subatomic levels the efficiency of the attachment of bacteria to silica surfaces.

The geological scientists are simulating environments similar to ground water in sandy soils. Sticking efficiency of bacteria has not been previously measured experimentally using the AFM.


Graduate student Tracy Cail will report the research results at the 226th American Chemical Society National Meeting in New York City September 7-11.

She reported in March on her initial experiments to see if the AFM could be used to measure sticking efficiencies at the nanoscale (www.innovations-report.com/html/reports/environment_sciences/report-17304.html) - also the first such experiments. Virginia Tech researchers have developed a cantilever for use in the AFM that allows them to study the attractions between microparticles.

"The same technique can also be applied to natural systems," she says.

Cail is developing a new method for predicting how bacteria and other contaminants can be transported in groundwater. "If we understand how they stick to various surfaces then we can use the information to design filters," she says.

For her research, Cail is using the bacteria, Enterococcus faecalis, because they are easy to model. "They look like the carboxylated polystyrene beads I used to do the initial work with the AFM. They are spherical, hard, and smooth, and are about 1 micron."

The bacteria are also plentiful. "They thrive in the Virginia Tech duck pond. They live naturally in human intestines but are serious hospital pathogens," she says.

"I’m looking at groundwater applications, but there is an area for expansion in terms of controls in hospital environments," she adds.

She found that Enterococcus faecalis are surprisingly robust. "They survived being put in a vacuum, long periods without food, and the imaging process."

Cail and geological sciences professor Michael Hochella Jr. will present "Measured sticking efficiencies of Enterococcus faecalis using atomic force microscopy" during the Division of Geochemistry poster session, 6 to 8 p.m., Tuesday, Sept.9, in the Javits Convention Center North Pavillion.

Cail will complete her Ph.D. in geological sciences from Virginia Tech in December and work as a postdoctoral associate at Oak Ridge National Laboratory in the area of contaminant transport. A native of Moncton, New Brunswick, Canada, she did her undergraduate work at St Francis Xavier University and her master’s degree work at the University of Nevada, Las Vegas.


Researchers’ contact information: Tracy Cail at tcail@vt.edu or 540-231-8575, or her major professor and co-author Michael F. Hochella Jr. at 540-231-6227 or hochella@vt.edu.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/
http://www.innovations-report.com/html/reports/environment_sciences/report-17304.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>