Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

17-year study confirms that lead in the soil descends slowly

17.07.2003


In a 17-year experiment on Vermont’s Camel’s Hump, three Dartmouth researchers find that lead moves very slowly though the soil. Using the highly accurate technique of isotopic analysis for the first time at this field site, the researchers traced several varieties of lead with different atomic weights.

Their study was published online on July 12 on the Environmental Science & Technology Web site, a journal of the American Chemical Society.

"This definitively supports a few earlier studies," says Friedland, "that show that lead in forests in the Northeast moves very, very slowly. The lead that was emitted from gasoline and settled into the soil over about 30 or 40 years is not going to end up in our drinking water anytime soon."



This doesn’t mean we should be complacent, say the researchers. The Dartmouth team and others are working on mountains worldwide to discover how soil retains pollutants such as lead and why the lead moves so slowly through the soil.

According to the researchers, lead is one of the most widely dispersed natural contaminants in the world. At elevated levels, it can cause nervous system disorders. In children it has been linked to learning disabilities and other behavioral and developmental problems. Throughout most of the 20th century, people added lead to the atmosphere primarily by burning leaded gasoline, which eventually settled to the earth. High elevation forests, such as the one at Camel’s Hump, are good environmental indicators because they are very sensitive to atmospheric and climate conditions, and they effectively collect lead. Lead pollution is easily intercepted by the leaves on mountain trees, and rain washes it into the soil.

One piece of this study began in 1984 as part of Andrew Friedland’s dissertation research. Friedland, now a Professor and Chair of the Environmental Studies Program at Dartmouth, applied a trace amount of lead over a one-square-meter area in a mountain forest in Vermont. This lead, which was enriched with a stable isotopic signature of 207, is not toxic in small concentrations, and its atomic signature makes it easy to find, even when it descends into the soil.

In 2001, Friedland, James Kaste, a post-doctoral researcher in the Earth Sciences Department and with the Environmental Studies Program, and Stefan Sturup, Director of Dartmouth’s Trace Metal Analysis Core Facility, returned to the exact plot where the lead 207 was applied on Camel’s Hump, a heavily forested, undeveloped mountain near the village of Huntington, Vt. They took soil samples at the site, which is about 200 hundred yards off of a popular hiking trail at an elevation of about 3,300 feet, and brought them to the lab at Dartmouth for analysis.

"We found that the lead 207 applied in 1984 had only moved down into the soil about seven centimeters," says Kaste, the lead author on the paper. "And it will probably move slower in the future because the soil becomes denser. It’s pretty rare to have a long-term study in this field, and here’s a 17-year experiment that we were able to conduct."

Kaste also followed lead 210, which is a natural lead isotope that falls out of the atmosphere. He traced it to learn how long the forest floor, which is the top 10 centimeters of organic material at the top of the soil, retains it. He found that atmospherically deposited lead, like lead 210, will remain in the forest floor between 60 and 150 years, depending on the vegetation.

"The next step is to identify how the lead binds to the soil," he says. "We want to learn if it binds to organic matter, for example, or if it precipitates out."

The researchers explain that their findings are representative of deciduous and coniferous forests throughout much of the Northeastern U.S. and in some areas in Europe and Scandinavia.

"Since the forest floor retains lead for decades and decades," says Kaste, "it could build up if we keep depositing it in levels that would be problematic, so it’s definitely good that we stopped adding lead to our gasoline."

Adds Friedland, "No matter what you do, the natural environment records your history. So we’re leaving a legacy of this spike of lead. It will probably still be there in 500 years."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>