Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


17-year study confirms that lead in the soil descends slowly


In a 17-year experiment on Vermont’s Camel’s Hump, three Dartmouth researchers find that lead moves very slowly though the soil. Using the highly accurate technique of isotopic analysis for the first time at this field site, the researchers traced several varieties of lead with different atomic weights.

Their study was published online on July 12 on the Environmental Science & Technology Web site, a journal of the American Chemical Society.

"This definitively supports a few earlier studies," says Friedland, "that show that lead in forests in the Northeast moves very, very slowly. The lead that was emitted from gasoline and settled into the soil over about 30 or 40 years is not going to end up in our drinking water anytime soon."

This doesn’t mean we should be complacent, say the researchers. The Dartmouth team and others are working on mountains worldwide to discover how soil retains pollutants such as lead and why the lead moves so slowly through the soil.

According to the researchers, lead is one of the most widely dispersed natural contaminants in the world. At elevated levels, it can cause nervous system disorders. In children it has been linked to learning disabilities and other behavioral and developmental problems. Throughout most of the 20th century, people added lead to the atmosphere primarily by burning leaded gasoline, which eventually settled to the earth. High elevation forests, such as the one at Camel’s Hump, are good environmental indicators because they are very sensitive to atmospheric and climate conditions, and they effectively collect lead. Lead pollution is easily intercepted by the leaves on mountain trees, and rain washes it into the soil.

One piece of this study began in 1984 as part of Andrew Friedland’s dissertation research. Friedland, now a Professor and Chair of the Environmental Studies Program at Dartmouth, applied a trace amount of lead over a one-square-meter area in a mountain forest in Vermont. This lead, which was enriched with a stable isotopic signature of 207, is not toxic in small concentrations, and its atomic signature makes it easy to find, even when it descends into the soil.

In 2001, Friedland, James Kaste, a post-doctoral researcher in the Earth Sciences Department and with the Environmental Studies Program, and Stefan Sturup, Director of Dartmouth’s Trace Metal Analysis Core Facility, returned to the exact plot where the lead 207 was applied on Camel’s Hump, a heavily forested, undeveloped mountain near the village of Huntington, Vt. They took soil samples at the site, which is about 200 hundred yards off of a popular hiking trail at an elevation of about 3,300 feet, and brought them to the lab at Dartmouth for analysis.

"We found that the lead 207 applied in 1984 had only moved down into the soil about seven centimeters," says Kaste, the lead author on the paper. "And it will probably move slower in the future because the soil becomes denser. It’s pretty rare to have a long-term study in this field, and here’s a 17-year experiment that we were able to conduct."

Kaste also followed lead 210, which is a natural lead isotope that falls out of the atmosphere. He traced it to learn how long the forest floor, which is the top 10 centimeters of organic material at the top of the soil, retains it. He found that atmospherically deposited lead, like lead 210, will remain in the forest floor between 60 and 150 years, depending on the vegetation.

"The next step is to identify how the lead binds to the soil," he says. "We want to learn if it binds to organic matter, for example, or if it precipitates out."

The researchers explain that their findings are representative of deciduous and coniferous forests throughout much of the Northeastern U.S. and in some areas in Europe and Scandinavia.

"Since the forest floor retains lead for decades and decades," says Kaste, "it could build up if we keep depositing it in levels that would be problematic, so it’s definitely good that we stopped adding lead to our gasoline."

Adds Friedland, "No matter what you do, the natural environment records your history. So we’re leaving a legacy of this spike of lead. It will probably still be there in 500 years."

Sue Knapp | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>