Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Monogamous animals may be more likely to die out


New research reveals a surprising risk factor for extinction: monogamy. Large mammals that live in pairs or have small harems are far more likely to die out than those with big harems in reserves in Ghana.

"In avoiding extinction, it pays to be promiscuous," says Justin Brashares of the University of British Columbia in Vancouver, who presents this work in the June issue of Conservation Biology. "This study is the first to show a strong link between social behavior and risk of extinction in mammals."

Most studies of risk factors for extinction are based on natural extinctions through the ages – but other risk factors may be at play in today’s world, where the extinction rate is unnaturally high due to overhunting, habitat fragmentation and other disturbances caused by people. Knowing which species are particularly sensitive to these disturbances would help conservationists figure out how to save them. Since 1970, more than half of the mammal populations in Ghanian reserves have become locally extinct. "This shocking loss of abundance and local diversity is occurring throughout Africa," says Brashares.

To help identify the risk factors for modern extinctions, he analyzed the extinctions and persistences of large mammals in six reserves in the savannas of Ghana, where the mammals have been censused monthly for more than 30 years and 78 local extinctions have been documented. Brashares assessed the extinction risk of nine traits (including population isolation, harem size, abundance and how much people like to eat them) in 41 mammal species (9 primates, 24 ungulates and 8 carnivores).

After accounting for the effect of reserve size, Brashares found that two of the factors studied correlated with local extinctions in the Ghanian reserves. The first is population isolation, which is not surprising because this was previously known to be a risk factor for natural extinctions.

The second is harem size: mammals that are monogamous or have small harems were more prone to extinction. For instance, several duiker species, which are monogamous, died out an average of 10 years after the reserves were established, while the African buffalo, which has harems with about 15 females, is still living in all the reserves. Similarly, several colobus monkey species, which have few mates, died out an average of 18 years after the reserves were established, while green monkeys and baboons, which have many mates, are still living in all the reserves.

How could being monogamous make animals more vulnerable to extinction? No one knows for sure but there is some evidence that hunters take more males than females from populations, which could lead to a dearth of males available for pairing in monogamous species. In contrast, species with large harems are more likely to have plenty of "spare" males. Another possibility is that when animals live in pairs or small groups, they are less likely to detect approaching hunters. "It may just be that it’s a lot easier to sneak up on one or two animals than it is 20," says Brashares.

This work suggests that managers should target conservation efforts and monitoring on species that are monogamous or live in small groups. "This could mean using them as indicator or umbrella species, or just giving these species special attention," says Brashares.

Justin Brashares | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>