Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just how many species are there, anyway?

26.05.2003


One barrier to protecting biodiversity is that there are no good ways of figuring out how many species there are in large areas. Now we may finally be able to find out: a new method accurately predicts the total number of North American butterfly species even when only a tenth of the ecoregions are sampled.


Western admiral, Limenitis weidemeyerii, near Gothic, Colorado (courtesy of Taylor H. Ricketts)



This could "at last enable ecology to estimate worldwide species diversity," say Michael Rosenzweig, Will Turner and Jonathan Cox of the University of Arizona, Tucson, and Taylor Ricketts of Stanford University in Stanford, California, and the World Wildlife Fund in Washington, DC, in the June issue of Conservation Biology.

While conservationists can predict how many species there are within a single habitat, the usefulness of this approach is limited because it’s impossible to sample all the habitats in large areas. Knowing the number of species is critical to tracking – and addressing -- declines in biodiversity. "Right now we can only guess that the correct answer for the total number of species worldwide lies between 2 and 100 million," says Rosenzweig.


To help find a way to assess biodiversity in large regions, Rosenzweig and his colleagues tested six methods for assessing biodiversity in a single habitat on a remarkably well-known group of species: butterflies in the U.S. and Canada. Because butterflies are so popular, we have an unusually complete set of data for which species live where. There are 561 known butterfly species and 110 ecoregions in the U.S. and Canada, and the researchers determined which of the six methods predicted the total number of species most accurately based on data from the smallest number of ecoregions.

Rosenzweig and his colleagues found that three of methods worked well even when limited to only a tenth of the ecoregions (11 out of 110). The best such estimate yielded nearly all of the known butterfly species (556 out of 561). While the researchers found that selecting ecoregions at random worked well, spacing them evenly throughout the continent was even better. "This is encouraging because it’s easy to do," says Rosenzweig. It would have been much harder if they had to select ecoregions based on biologically-relevant factors. "It’s not easy to know in advance what measures are important to most species – temperature? rainfall? elevation?" he says.

The researchers have even more encouraging news. Rosenzweig and his colleagues have recently found that their approach also works for assessing the large-scale biodiversity of many other groups of species, from marine invertebrates to birds. "It points the way for getting the answer to how many species there are worldwide," says Rosenzweig.

Michael Rosenzweig | EurekAlert!
Further information:
http://conservationbiology.org/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>