Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up contaminated soil, groundwater

20.05.2003


In the same way dishwashing detergents clean greasy dishes, scientists are using detergent-like surfactants to clean contaminated regions underground.



Cleaning up contaminated soil and groundwater is estimated to cost trillions of dollars in North America. The problem requires many different approaches because there are hundreds of different types of contaminants and the soils and geology differ from place to place. One approach that has shown promise for some situations can be viewed as "washing dirt".

In the same way dishwashing detergents clean greasy dishes, scientists studying groundwater contamination are using detergent-like surfactants to clean contaminated regions underground. Surfactants aid in soil and groundwater clean up by dissolving contaminants, such as oil or dry cleaning fluids. Surfactants make the removal of contaminants easier and faster.


The beneficial effects of surfactants on soil and groundwater clean-up efforts come at the cost of complicating our ability to use computer models to predict the behavior of contaminant and water flow. That is especially true in soil and rocks in the vadose zone, which is a lower water content zone above the water table.

Scientists Eric Henry, University of North Carolina at Wilmington, and James Smith, McMaster University, authored an article in the May issue of Vadose Zone Journal, published by the Soil Science Society of America, that summarizes the current state of knowledge on the effects of surfactants on water flow in the vadose zone.

Among the findings that Henry and Smith discuss are data from their research that shows surfactants can cause contaminants to move more rapidly through the vadose zone and reach the water table more quickly than if no surfactant was present. This behavior needs to be considered when deciding how, when, and where to use soil-washing systems. Despite this seemingly adverse effect caused by surfactant use in the vadose zone, the authors are not discouraged.

"This type of information advances our knowledge of unsaturated flow processes and will allow us to design more effective clean-up systems. For example, groundwater extraction wells could be installed to capture the contaminants as they reach the water table," said Henry.

Based on the work summarized in their article, Henry and Smith acknowledge that research over the last decade has generated advances in our knowledge of these complicated systems, but much remains unknown. They suggest that improved computer models to simulate these complex systems will be highly useful for developing better designs for cleaning contaminated soil and groundwater. Ongoing research into the effect of surfactants on the flow of contaminants within the vadose zone holds real promise to help reduce the time and money associated with cleaning the subsurface environment.



Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication published by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical, and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://www.vadosezonejournal.org
http://www.agronomy.org

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>