Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up contaminated soil, groundwater

20.05.2003


In the same way dishwashing detergents clean greasy dishes, scientists are using detergent-like surfactants to clean contaminated regions underground.



Cleaning up contaminated soil and groundwater is estimated to cost trillions of dollars in North America. The problem requires many different approaches because there are hundreds of different types of contaminants and the soils and geology differ from place to place. One approach that has shown promise for some situations can be viewed as "washing dirt".

In the same way dishwashing detergents clean greasy dishes, scientists studying groundwater contamination are using detergent-like surfactants to clean contaminated regions underground. Surfactants aid in soil and groundwater clean up by dissolving contaminants, such as oil or dry cleaning fluids. Surfactants make the removal of contaminants easier and faster.


The beneficial effects of surfactants on soil and groundwater clean-up efforts come at the cost of complicating our ability to use computer models to predict the behavior of contaminant and water flow. That is especially true in soil and rocks in the vadose zone, which is a lower water content zone above the water table.

Scientists Eric Henry, University of North Carolina at Wilmington, and James Smith, McMaster University, authored an article in the May issue of Vadose Zone Journal, published by the Soil Science Society of America, that summarizes the current state of knowledge on the effects of surfactants on water flow in the vadose zone.

Among the findings that Henry and Smith discuss are data from their research that shows surfactants can cause contaminants to move more rapidly through the vadose zone and reach the water table more quickly than if no surfactant was present. This behavior needs to be considered when deciding how, when, and where to use soil-washing systems. Despite this seemingly adverse effect caused by surfactant use in the vadose zone, the authors are not discouraged.

"This type of information advances our knowledge of unsaturated flow processes and will allow us to design more effective clean-up systems. For example, groundwater extraction wells could be installed to capture the contaminants as they reach the water table," said Henry.

Based on the work summarized in their article, Henry and Smith acknowledge that research over the last decade has generated advances in our knowledge of these complicated systems, but much remains unknown. They suggest that improved computer models to simulate these complex systems will be highly useful for developing better designs for cleaning contaminated soil and groundwater. Ongoing research into the effect of surfactants on the flow of contaminants within the vadose zone holds real promise to help reduce the time and money associated with cleaning the subsurface environment.



Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication published by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical, and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://www.vadosezonejournal.org
http://www.agronomy.org

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>