Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 Arctic lakes show dramatic effects of climate warming

09.04.2003


“Bellwether” of what’s to come farther south, say Queen’s researchers

Dramatic clues to North American climate change have been discovered by a team of Queen’s University scientists in the bottom of 50 Arctic lakes.

Using innovative techniques that enable them to collect historic evidence from fossilized algae in lake bottom sediment, the researchers have found signs of marked environmental changes in a variety of lakes of different depths and composition, within a 750-km region bordering the northern tree-line. The changes are a signal of things to come in the rest of North America, say the Queen’s paleolimnologists.



“We’re seeing a significant, regional change in the ecology of these lakes over the past two centuries that is consistent with warmer conditions,” says Dr. John Smol, Canada Research Chair in Environmental Change and co-head of the university’s Paleoecological Environmental Assessment and Research Laboratory (PEARL). Dr. Smol conducted the study with Dr. Kathleen Rühland and student Alisha Priesnitz of Queen’s Biology Department.

“Because the Arctic is a very vulnerable environment and usually the first area of the continent to show signs of environmental change – often to the greatest degree – it’s considered a bellwether of what will happen elsewhere,” says Dr. Rühland. “These are important signals that all of us should be heeding: the lakes’ sedimentary records have tracked marked and directional ecosystem changes.”

The Queen’s study will be published this month in the international journal Arctic, Antarctic, and Alpine Research.

To reconstruct past environmental trends, the team used fossil markers (tiny algal cells) preserved in lake sediment. Sediment cores were collected by helicopter from the 50 lakes, in an area from Yellowknife, NWT, in the Boreal forest area towards the Bering Sea in the Arctic tundra. For each lake, they compared fossilized algae preserved in the top, most recent sediment layer with those from the bottom, pre-industrial layer dating back about 200 years.

They found that the aquatic habitat of today is much different from that of pre-industrial times. More fossils of the type that live in open water environments were found in the top (most recent) layer of sediment – an indication that these lakes have less ice cover and a longer growing season that would alter important lakewater properties such as light availability and the way lakes stratify, as a result of warming. This marked a major ecological shift in the lakes that coincides with a period of increased human industrial activities and emissions in more southern regions.

Earlier PEARL studies in the High Arctic tundra had indicated major changes in the different layers of fossils associated with climate warming. The new findings bring the effects of climate change closer to populated areas. “The logical extension was to see if tree-line lakes also show these dramatic changes, and this study confirms that the impact is even greater than previously documented,” says Dr. Rühland. “We believe that the consequences of greenhouse gas emissions, in the form of climate change, are already having a notable impact on the Arctic environment.”

As well as affecting plant and animal life in this region, melting permafrost and less ice cover are already beginning to have repercussions on human concerns such as transportation, housing, and even sovereignty issues.

Last year an entire Nunavik community was relocated by the Quebec government after melting permafrost caused houses to slide from their foundations. Other researchers have found evidence that ocean ice is thinning, which could have future implications for intercontinental transportation routes.

“Until recently, no one was reconstructing Arctic climates in this way, because the technology didn’t exist,” says Dr. Smol. “Now that we can, in essence, reconstruct the past through this indirect technique, we’re filling in gaps in our knowledge and finding answers to many ecological and environmental questions that have great significance for the future.”

PLEASE NOTE: Colour graphics of the modern and pre-industrial diatoms are available in JPEG format. To receive a copy of the Queen’s study, contact:

-30-

Nancy Dorrance, Queen’s News & Media Services, 613.533.2869
Lorinda Peterson, Queen’s News & Media Services, 613.533.6000 ext. 77559

Attention broadcasters: Queen’s now has facilities to provide broadcast quality audio and video feeds. For television interviews, we can provide a live, real-time double ender from Kingston fibre optic cable. Please call for details.

Nancy Dorrance | Queen´s University
Further information:
http://qnc.queensu.ca/story_loader.php?id=3e917778b9960

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>