Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 Arctic lakes show dramatic effects of climate warming

09.04.2003


“Bellwether” of what’s to come farther south, say Queen’s researchers

Dramatic clues to North American climate change have been discovered by a team of Queen’s University scientists in the bottom of 50 Arctic lakes.

Using innovative techniques that enable them to collect historic evidence from fossilized algae in lake bottom sediment, the researchers have found signs of marked environmental changes in a variety of lakes of different depths and composition, within a 750-km region bordering the northern tree-line. The changes are a signal of things to come in the rest of North America, say the Queen’s paleolimnologists.



“We’re seeing a significant, regional change in the ecology of these lakes over the past two centuries that is consistent with warmer conditions,” says Dr. John Smol, Canada Research Chair in Environmental Change and co-head of the university’s Paleoecological Environmental Assessment and Research Laboratory (PEARL). Dr. Smol conducted the study with Dr. Kathleen Rühland and student Alisha Priesnitz of Queen’s Biology Department.

“Because the Arctic is a very vulnerable environment and usually the first area of the continent to show signs of environmental change – often to the greatest degree – it’s considered a bellwether of what will happen elsewhere,” says Dr. Rühland. “These are important signals that all of us should be heeding: the lakes’ sedimentary records have tracked marked and directional ecosystem changes.”

The Queen’s study will be published this month in the international journal Arctic, Antarctic, and Alpine Research.

To reconstruct past environmental trends, the team used fossil markers (tiny algal cells) preserved in lake sediment. Sediment cores were collected by helicopter from the 50 lakes, in an area from Yellowknife, NWT, in the Boreal forest area towards the Bering Sea in the Arctic tundra. For each lake, they compared fossilized algae preserved in the top, most recent sediment layer with those from the bottom, pre-industrial layer dating back about 200 years.

They found that the aquatic habitat of today is much different from that of pre-industrial times. More fossils of the type that live in open water environments were found in the top (most recent) layer of sediment – an indication that these lakes have less ice cover and a longer growing season that would alter important lakewater properties such as light availability and the way lakes stratify, as a result of warming. This marked a major ecological shift in the lakes that coincides with a period of increased human industrial activities and emissions in more southern regions.

Earlier PEARL studies in the High Arctic tundra had indicated major changes in the different layers of fossils associated with climate warming. The new findings bring the effects of climate change closer to populated areas. “The logical extension was to see if tree-line lakes also show these dramatic changes, and this study confirms that the impact is even greater than previously documented,” says Dr. Rühland. “We believe that the consequences of greenhouse gas emissions, in the form of climate change, are already having a notable impact on the Arctic environment.”

As well as affecting plant and animal life in this region, melting permafrost and less ice cover are already beginning to have repercussions on human concerns such as transportation, housing, and even sovereignty issues.

Last year an entire Nunavik community was relocated by the Quebec government after melting permafrost caused houses to slide from their foundations. Other researchers have found evidence that ocean ice is thinning, which could have future implications for intercontinental transportation routes.

“Until recently, no one was reconstructing Arctic climates in this way, because the technology didn’t exist,” says Dr. Smol. “Now that we can, in essence, reconstruct the past through this indirect technique, we’re filling in gaps in our knowledge and finding answers to many ecological and environmental questions that have great significance for the future.”

PLEASE NOTE: Colour graphics of the modern and pre-industrial diatoms are available in JPEG format. To receive a copy of the Queen’s study, contact:

-30-

Nancy Dorrance, Queen’s News & Media Services, 613.533.2869
Lorinda Peterson, Queen’s News & Media Services, 613.533.6000 ext. 77559

Attention broadcasters: Queen’s now has facilities to provide broadcast quality audio and video feeds. For television interviews, we can provide a live, real-time double ender from Kingston fibre optic cable. Please call for details.

Nancy Dorrance | Queen´s University
Further information:
http://qnc.queensu.ca/story_loader.php?id=3e917778b9960

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>