Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear probe may be new weapon against acid mine drainage, salinity

21.11.2002


A nuclear probe developed by CSIRO for minerals exploration and mining may soon be used to combat some of the world’s biggest environmental problems.



Overseas the probe could help prevent acid rain, one of the most pressing environmental problems in the northern hemisphere.

CSIRO also hopes to use the probe to measure salt concentrations in soil as part of its assault on dryland salinity.


"Acid rain is caused when high sulphur fossil fuels are burnt," says Dr Mihai Borsaru, a nuclear physicist at CSIRO Exploration and Mining. "Australian coal is low in sulphur but some coal extracted from Europe and North America is not. Armed with data from the probe, companies will be able to leave high sulphur coals in the ground."

Scientists expect that the portable borehole logging instrument, one of CSIRO’s SIROLOG suite of products, will be used to measure sulphur in mine waste rock and in coal.

"Sulphur is the bane of the mining industry. High concentrations in waste rock, cause acid mine drainage. The sulphur oxidises and combines with water to form sulphuric acid, which, in high volumes, wreaks havoc on the environment."

Dr Borsaru told the Industrial Radioisotopes and Radiation Measurement Applications conference in Bologna, Italy recently that the probe would optimise the management of waste rock.

"It will provide mining companies with accurate sulphur readings in boreholes," he said.

The probe centres on ’neutron capture’ in a technique called prompt gamma neutron activation analysis (PGNAA).

Neutrons emitted by a source, the artificial isotope californium-252, hit the rock and are captured by the nuclei of atoms in it. The nuclei are now slightly heavier and in an excited state. They relax by ejecting gamma rays, the energy of which betrays the identity of the elements.

The probe complements chemical analysis, and since it investigates bulk properties, it generates data that is more representative than chemical data.

The PGNAA probe is part of the SIROLOG suite of instruments in use in Australia and overseas for exploration, mine planning and production. Initially designed for the mining industry, the probe is also being evaluated for its potential as an environmental management tool.

It is one of several products including hand-held instruments and other borehole logging probes based on natural gamma and gamma-gamma techniques.

Various SIROLOG systems are in use in the mining industries in Australia, India, Vietnam, Thailand, Chile, Columbia, Iran and Egypt.

The Australian Coal Association Research Program and mining companies have contributed more than $2 million to the SIROLOG project.

Collaborators included Hamersley Iron, Century Zinc, the State Electricity Commission of Victoria, BHP, Callide Mines, and the Brisbane-based Auslog, which holds a non-exclusive licence for the technology.

More information:

Mr Mark Berry +61 7 3327 4570
mark.berry@csiro.au

Dr Mihai Borsaru +61 7 3327 4627
m.borsaru@csiro.au

Robert Hoge, mobile: 0438 120 401
robert.hoge@csiro.au

Rosie Schmedding | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>