Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear probe may be new weapon against acid mine drainage, salinity

21.11.2002


A nuclear probe developed by CSIRO for minerals exploration and mining may soon be used to combat some of the world’s biggest environmental problems.



Overseas the probe could help prevent acid rain, one of the most pressing environmental problems in the northern hemisphere.

CSIRO also hopes to use the probe to measure salt concentrations in soil as part of its assault on dryland salinity.


"Acid rain is caused when high sulphur fossil fuels are burnt," says Dr Mihai Borsaru, a nuclear physicist at CSIRO Exploration and Mining. "Australian coal is low in sulphur but some coal extracted from Europe and North America is not. Armed with data from the probe, companies will be able to leave high sulphur coals in the ground."

Scientists expect that the portable borehole logging instrument, one of CSIRO’s SIROLOG suite of products, will be used to measure sulphur in mine waste rock and in coal.

"Sulphur is the bane of the mining industry. High concentrations in waste rock, cause acid mine drainage. The sulphur oxidises and combines with water to form sulphuric acid, which, in high volumes, wreaks havoc on the environment."

Dr Borsaru told the Industrial Radioisotopes and Radiation Measurement Applications conference in Bologna, Italy recently that the probe would optimise the management of waste rock.

"It will provide mining companies with accurate sulphur readings in boreholes," he said.

The probe centres on ’neutron capture’ in a technique called prompt gamma neutron activation analysis (PGNAA).

Neutrons emitted by a source, the artificial isotope californium-252, hit the rock and are captured by the nuclei of atoms in it. The nuclei are now slightly heavier and in an excited state. They relax by ejecting gamma rays, the energy of which betrays the identity of the elements.

The probe complements chemical analysis, and since it investigates bulk properties, it generates data that is more representative than chemical data.

The PGNAA probe is part of the SIROLOG suite of instruments in use in Australia and overseas for exploration, mine planning and production. Initially designed for the mining industry, the probe is also being evaluated for its potential as an environmental management tool.

It is one of several products including hand-held instruments and other borehole logging probes based on natural gamma and gamma-gamma techniques.

Various SIROLOG systems are in use in the mining industries in Australia, India, Vietnam, Thailand, Chile, Columbia, Iran and Egypt.

The Australian Coal Association Research Program and mining companies have contributed more than $2 million to the SIROLOG project.

Collaborators included Hamersley Iron, Century Zinc, the State Electricity Commission of Victoria, BHP, Callide Mines, and the Brisbane-based Auslog, which holds a non-exclusive licence for the technology.

More information:

Mr Mark Berry +61 7 3327 4570
mark.berry@csiro.au

Dr Mihai Borsaru +61 7 3327 4627
m.borsaru@csiro.au

Robert Hoge, mobile: 0438 120 401
robert.hoge@csiro.au

Rosie Schmedding | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>