Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study sheds light on mess in polluted streams


Downstream from mining sites, a suffocating gel forms in the water of creeks and rivers. A new study by an international team of researchers details the processes that make that gel and should advance our understanding of the damaging environmental effects of mine drainage and acid rain.

"This new nanoscale level of understanding of trace metal pollution of streams opens new doors for addressing the problem of contaminated waters in affected areas," says Sonia Esperanca, program director in the National Science Foundation’s (NSF) division of earth sciences, which funded the research.

According to the team’s report in this Friday’s issue (Sept. 27) of the journal Science, the gel results when runoff made acidic by mining or acid rain collects aluminum from local soils and then mixes with stream water that is less acidic. In subsequent chemical reactions, aluminum molecules link together to form polymer gel.

Scientists call the gel "floc" and say its influence is widespread: Mining disrupts about 240,000 square kilometers of the Earth’s surface (about 93,000 square miles, an area roughly the size of Oregon).

The gelatinous floc is bad enough by itself; it gums up the gills of fish and suffocates them, and is equally deadly to other aquatic animals and plants. But it also possesses another dangerous quality: It binds to toxic metals, including mercury, lead and cadmium, and transports them far downstream.

"This combination of floc and metals pollutes streams," said William Casey, a University of California at Davis geochemist and an author of the new report. "Bad things adsorb into this gel and then it travels forever."

Knowing how floc forms at the molecular level may suggest some practical solutions, Casey said. One such solution might be to stop aluminum from migrating into streams.

"Now we know how these pollutants enter the watershed, how fast they move and perhaps how to prevent the reactions by cutting off the ingredients. Detailing the molecular pathways helps us better understand the pollutants’ source and their fate," Casey said.

Cheryl Dybas | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>