Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on mess in polluted streams

27.09.2002


Downstream from mining sites, a suffocating gel forms in the water of creeks and rivers. A new study by an international team of researchers details the processes that make that gel and should advance our understanding of the damaging environmental effects of mine drainage and acid rain.



"This new nanoscale level of understanding of trace metal pollution of streams opens new doors for addressing the problem of contaminated waters in affected areas," says Sonia Esperanca, program director in the National Science Foundation’s (NSF) division of earth sciences, which funded the research.

According to the team’s report in this Friday’s issue (Sept. 27) of the journal Science, the gel results when runoff made acidic by mining or acid rain collects aluminum from local soils and then mixes with stream water that is less acidic. In subsequent chemical reactions, aluminum molecules link together to form polymer gel.


Scientists call the gel "floc" and say its influence is widespread: Mining disrupts about 240,000 square kilometers of the Earth’s surface (about 93,000 square miles, an area roughly the size of Oregon).

The gelatinous floc is bad enough by itself; it gums up the gills of fish and suffocates them, and is equally deadly to other aquatic animals and plants. But it also possesses another dangerous quality: It binds to toxic metals, including mercury, lead and cadmium, and transports them far downstream.

"This combination of floc and metals pollutes streams," said William Casey, a University of California at Davis geochemist and an author of the new report. "Bad things adsorb into this gel and then it travels forever."

Knowing how floc forms at the molecular level may suggest some practical solutions, Casey said. One such solution might be to stop aluminum from migrating into streams.

"Now we know how these pollutants enter the watershed, how fast they move and perhaps how to prevent the reactions by cutting off the ingredients. Detailing the molecular pathways helps us better understand the pollutants’ source and their fate," Casey said.

Cheryl Dybas | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>