Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable reinforced plastics could replace landfills with compost heaps, Cornell fiber scientist believes

10.09.2002


Instead of landfills clogged with computer and car parts, packaging and a myriad of other plastic parts, a Cornell University fiber scientist has a better idea. In coming years, he says, many of these discarded items will be composted.



The key to this "green" solution, says researcher Anil Netravali, is fully biodegradable composites made from soybean protein and other biodegradable plastics and plant-based fibers, developed at Cornell and elsewhere.

"These new fully biodegradable, environment-friendly green composites have good properties and could replace plastic parts in the interiors of cars and trains, in computers and in packaging materials and other consumer products," says Netravali, a professor of fiber science in the College of Human Ecology at Cornell. "They also provide excellent insulation against heat and noise for use in applications such as cars. Although the plant-based fibers may not be as strong as graphite and Kevlar®, for example, they are low in cost, biodegradable and replenishable on a yearly basis," he says.


Netravali’s findings are published in the September issue of the Journal of Materials Science .

He presented his research on green composites made from ramie fibers (which have a feel similar to silk) at the International Conference on Composites Engineering in Denver two years ago and in San Diego this summer. Ramie fibers are obtained from the stem of an Asian perennial shrub and the resin made from a soy protein isolate-polymer. He did this work in collaboration with Preeti Lodha, a graduate student who received her master’s degree from Cornell in 2000, and Sunghyun Nam, who completed her master’s in fiber science earlier this year.

Instead of nondegradable plastics based on petroleum products, green composites (also known as reinforced plastics) use natural fibers that, for strength, are embedded in a matrix made of a plant-based or other resin. Netravali points out that composites technology is not new -- he cites primitive bricks and walls made of straw mixed with mud as examples.

Netravali notes that most nondegradable plastic composites, made from petroleum-based or synthetic polyurethane, polyethylene and polypropylene, end up in landfills. Not much can be reused or recycled. Plant-based green composites, however, could, he says, become inexpensive alternatives for many mass-produced items. "They will be made from yearly renewable agricultural sources and would be environmentally friendly because they would naturally biodegrade once they were thrown on a compost pile."

Netravali’s research group is working with a number of fibers, including those obtained from kenaf stems, pineapple and henequen leaves and banana stems. The resin materials he is researching include commercial resins, such as polyvinyl alcohol and polylactones, and those derived from microorganisms. He currently is manipulating the composites to improve their mechanical properties, such as stiffness and strength, and to decrease their water absorption, which could start premature degradation.

The new composites could also substitute for wood in such applications as crates or building studs. "Trees take 25 years to grow; fibers we use, however, come from plants that grow to maturity in a year," Netravali points out.

Netravali agrees that green composites are likely to be more expensive than nonbiodegradable plastics, but as they gain acceptance and the volume increases, they will become less expensive, he says. For example, graphite fibers, commonly used as a reinforcement in space applications, cost over $180 a pound when first developed. Today they are less than $10 a pound.

Susan S. Lang | EurekAlert!
Further information:
http://www.news.cornell.edu/releases/Sept02/green.plastics.ssl.html

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>