Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable reinforced plastics could replace landfills with compost heaps, Cornell fiber scientist believes

10.09.2002


Instead of landfills clogged with computer and car parts, packaging and a myriad of other plastic parts, a Cornell University fiber scientist has a better idea. In coming years, he says, many of these discarded items will be composted.



The key to this "green" solution, says researcher Anil Netravali, is fully biodegradable composites made from soybean protein and other biodegradable plastics and plant-based fibers, developed at Cornell and elsewhere.

"These new fully biodegradable, environment-friendly green composites have good properties and could replace plastic parts in the interiors of cars and trains, in computers and in packaging materials and other consumer products," says Netravali, a professor of fiber science in the College of Human Ecology at Cornell. "They also provide excellent insulation against heat and noise for use in applications such as cars. Although the plant-based fibers may not be as strong as graphite and Kevlar®, for example, they are low in cost, biodegradable and replenishable on a yearly basis," he says.


Netravali’s findings are published in the September issue of the Journal of Materials Science .

He presented his research on green composites made from ramie fibers (which have a feel similar to silk) at the International Conference on Composites Engineering in Denver two years ago and in San Diego this summer. Ramie fibers are obtained from the stem of an Asian perennial shrub and the resin made from a soy protein isolate-polymer. He did this work in collaboration with Preeti Lodha, a graduate student who received her master’s degree from Cornell in 2000, and Sunghyun Nam, who completed her master’s in fiber science earlier this year.

Instead of nondegradable plastics based on petroleum products, green composites (also known as reinforced plastics) use natural fibers that, for strength, are embedded in a matrix made of a plant-based or other resin. Netravali points out that composites technology is not new -- he cites primitive bricks and walls made of straw mixed with mud as examples.

Netravali notes that most nondegradable plastic composites, made from petroleum-based or synthetic polyurethane, polyethylene and polypropylene, end up in landfills. Not much can be reused or recycled. Plant-based green composites, however, could, he says, become inexpensive alternatives for many mass-produced items. "They will be made from yearly renewable agricultural sources and would be environmentally friendly because they would naturally biodegrade once they were thrown on a compost pile."

Netravali’s research group is working with a number of fibers, including those obtained from kenaf stems, pineapple and henequen leaves and banana stems. The resin materials he is researching include commercial resins, such as polyvinyl alcohol and polylactones, and those derived from microorganisms. He currently is manipulating the composites to improve their mechanical properties, such as stiffness and strength, and to decrease their water absorption, which could start premature degradation.

The new composites could also substitute for wood in such applications as crates or building studs. "Trees take 25 years to grow; fibers we use, however, come from plants that grow to maturity in a year," Netravali points out.

Netravali agrees that green composites are likely to be more expensive than nonbiodegradable plastics, but as they gain acceptance and the volume increases, they will become less expensive, he says. For example, graphite fibers, commonly used as a reinforcement in space applications, cost over $180 a pound when first developed. Today they are less than $10 a pound.

Susan S. Lang | EurekAlert!
Further information:
http://www.news.cornell.edu/releases/Sept02/green.plastics.ssl.html

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>