Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient ecosystems organized much like our own

30.04.2008
Similarities between half-billion-year-old and recent food webs point to deep principles underpinning the structure of ecological relationships, as shown by researchers from the Santa Fe Institute, Microsoft Research Cambridge and elsewhere

It was an Anomalocaris-eat-trilobite world, filled with species like nothing on today's Earth. But the ecology of Cambrian communities was remarkably modern, say researchers behind the first study to reconstruct detailed food webs for ancient ecosystems. Their paper, published this week in the open-access journal PLoS Biology, suggests that networks of feeding relationships among marine species that lived hundreds of millions of years ago are remarkably similar to those of today.

Food webs depict the feeding interactions among species within habitats--like food chains, only more complex and realistic. The discovery of strong and enduring regularities in how such webs are organized will help us understand the history and evolution of life, and could provide insights for modern ecology--such as how ecosystems will respond to biological extinctions and invasions.

A multidisciplinary group of scientists led by ecologist Jennifer Dunne of the Santa Fe Institute in Santa Fe, New Mexico and the Pacific Ecoinformatics and Computational Ecology Lab in Berkeley, California, studied the food webs of sea creatures preserved in rocks from the Cambrian, when there was an explosion of diversity of multicellular organisms--including early precursors to today's species as well as many strange animals that were evolutionary dead ends. Report co-author Richard Williams of Microsoft Research in Cambridge, UK, developed the cutting edge "Network3D" software that was used for analysis and visualization of the food webs.

The researchers compiled data from the 505 million-year-old Burgess Shale in British Columbia, Canada and the even earlier Chengjiang Shale of eastern Yunnan Province, China, dating from 520 million years ago. Both fossil-rich assemblages are unusual because they have exquisitely preserved soft-body parts for a wide range of species. They determined who was eating whom by piecing together a variety of clues. There was the occasional smoking gun, such as fossilized gut contents in the carnivorous, cannibalistic priapulid worm Ottoia prolifica. However, in most cases, feeding interactions were inferred from where species lived and what body parts they had. For example, grasping claws, swimming lobes, big eyes, and toothy mouthparts suggest that Anomalocaris canadensis, a large, unusual organism with no modern descendents, was a formidable predator of trilobites and other arthropods, consistent with bite marks found on some fossils.

To compare the organization of Cambrian and recent ecosystems, the team used methods for studying network structure, including new approaches for analyzing uncertainty in the fossil data. "Paleontologists have long known that food webs were important but we have lacked a rigorous method for studying them in deep time," comments co-author and paleontologist Doug Erwin of the Santa Fe Institute and the Smithsonian Institution. "We have shown that we can reconstruct ancient food webs and compare them to modern webs, opening up new avenues of paleoecology. We were surprised to see that most aspects of the basic structure of food webs seem to have become established during the initial explosion of animal life."

The Cambrian food webs share many similarities with modern webs, such as how many species are expected to be omnivores or cannibals, and the distribution of how many types of prey each species has. Such regularities, and any differences, become apparent only when variation in the number of species and links among webs is accounted for. "There are a few intriguing differences with modern webs, particularly in the earlier Chengjiang Shale web. However, in general, it doesn't seem to matter what species, or environment, or evolutionary history you've got, you see many of the same sorts of food-web patterns," explains Dunne.

"What we don't know," Dunne adds, "is why food webs from different habitats and across deep time share so many regularities. It could be that species-level evolution leads to stable community-level patterns, for example by limiting the number of species with many predators through selective pressures that result in extinctions or development of predator defences. Or, patterns may reflect dynamically persistent configurations of many interacting species, or fundamental physical constraints on how resources flow through ecological networks."

Answering such questions will break new ground at the intersection of ecology, evolution and physics. And it may provide valuable insights into present-day ecology. As Williams points out, "This research is an excellent example of how computational methods can be used as part of an inter-disciplinary study to help produce novel results. By getting a better idea of how ecosystems behaved in the past, we may better comprehend and mitigate what is happening to ecosystems today and in the future."

Natalie Bouaravong | EurekAlert!
Further information:
http://www.plos.org

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>