Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Citrate appears to control buckyball clumping but environmental concerns remain

08.04.2008
Fullerenes, also fondly known as buckyballs, are showing an ugly side. Since being discovered in 1985, the hollow carbon atoms have been adapted for nanotechnology and biomedical applications ranging from electronics to carriers of imaging materials.

It appears that the hydrophobic, or water hating, carbon molecules clump together in water, forming aggregates of thousands of molecules. And there are reports that these aggregates can be toxic to microorganisms and even fish, should they escape from processing into surface water and ground water.

Now researchers at Virginia Tech have demonstrated that this behavior can be changed by the addition of citric acid – although the good news and bad news of this recent discovery has yet to be determined. They will report on their research to both environmental chemists and colloidal chemists at the American Chemical Society 235th national meeting in New Orleans on April 6 to 10, 2008.

“Our group and other research groups worldwide are examining what makes these fullerene aggregates tick and how they form,” said Peter Vikesland, associate professor of civil and environmental engineering at Virginia Tech. “Once they clump, they don’t settle out. People don’t know why they remain suspended. And we don’t really know how many molecules are in a clump. We use the term nC60 where N means some number that is extremely large.”

What Vikesland’s group has done that is different and novel is, instead of mixing the molecules with water, they have added citric acid, a naturally occurring and readily available acid. “The result is that instead of unstructured clumps, we get reproducible sphere-shaped aggregates,” he said.

They discovered, for example, that in the presence of a little bit of acid, which emulates the environment in the case of an accidental release of fullerenes, the aggregates are similar to those formed in water alone. But when more acid is added, the diameter of the aggregates becomes smaller. “We want to understand the implications of this finding to the toxicity, movement, and fate of fullerenes in the environment.”

Citric acid is well understood as a proxy for other kinds of organic acids, including those within cells. Some of the citrate-based spheres that Vikesland’s group discovered are similar to what happens intercellularly when human cells are exposed to C60, he said. “We think citrate and other organic acids with a carboxyl group make C60 more water soluble.”

Vikesland will present “Effects of small molecular weight acids on C60 aggregate formation and transport (ENVR 26)” to the Division of Environmental Chemistry at 1:35 p.m. Sunday, April 6, in room 235 of the Morial convention Center. Authors of the paper are Vikesland, civil and environmental engineering Ph.D. student Xiaojun Chang of Luoyang, Henan, China, and master’s degree student Laura K. Duncan of Augusta, Ga., and research assistant professor and TEM lab director Joerg R. Jinschek

Future environmental research will be done with simulated subsurface environments using a sand column to determine how these acidified masses move in ground water.

Vikesland will present Chang’s and his research about how C60 and citric acid interact to the Division of Colloid and Surface Chemistry on Wednesday, April 9, at 4:30 p.m. in 225 Morial Convention Center. He will present the results of various imaging analysis, such as atomic force microscopy. “We have no answers but we have a hypothesis, still unproven, that there are weak interactions between citrate and individual carbon molecules that cause the spherical shape,” Vikesland said.

The Vikesland group is exploring whether the C60-citrate interaction can be used to create reproducible shaped objects. Many fullerene-based products presently require solvents, which are then washed off. Unfortunately, the engineered fullerenes can retain solvents. Using citrate “is very green chemistry,” Vikesland said. “There are no solvents. It is a cleaner way to produce these things. Citrate may be an alternative.”

But there are challenges. “It’s not a hard bond but a weak attractive force, which makes these spherical aggregates challenging to work with. At the present time we don’t know how they will fall apart and what their products are,” Vikesland said.

In the meantime, the solvent issue aside, the current rush to put fullerenes into materials may not be wise “because we don’t understand what is going on,” said Vikesland. “If you have a face cream with fullerenes as an antioxidant – we don’t know how they will react. There are many organic acids in the environment.”

He concludes, “There are uncertainties. Everyone wants to prevent future problems.”

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>