Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Citrate appears to control buckyball clumping but environmental concerns remain

08.04.2008
Fullerenes, also fondly known as buckyballs, are showing an ugly side. Since being discovered in 1985, the hollow carbon atoms have been adapted for nanotechnology and biomedical applications ranging from electronics to carriers of imaging materials.

It appears that the hydrophobic, or water hating, carbon molecules clump together in water, forming aggregates of thousands of molecules. And there are reports that these aggregates can be toxic to microorganisms and even fish, should they escape from processing into surface water and ground water.

Now researchers at Virginia Tech have demonstrated that this behavior can be changed by the addition of citric acid – although the good news and bad news of this recent discovery has yet to be determined. They will report on their research to both environmental chemists and colloidal chemists at the American Chemical Society 235th national meeting in New Orleans on April 6 to 10, 2008.

“Our group and other research groups worldwide are examining what makes these fullerene aggregates tick and how they form,” said Peter Vikesland, associate professor of civil and environmental engineering at Virginia Tech. “Once they clump, they don’t settle out. People don’t know why they remain suspended. And we don’t really know how many molecules are in a clump. We use the term nC60 where N means some number that is extremely large.”

What Vikesland’s group has done that is different and novel is, instead of mixing the molecules with water, they have added citric acid, a naturally occurring and readily available acid. “The result is that instead of unstructured clumps, we get reproducible sphere-shaped aggregates,” he said.

They discovered, for example, that in the presence of a little bit of acid, which emulates the environment in the case of an accidental release of fullerenes, the aggregates are similar to those formed in water alone. But when more acid is added, the diameter of the aggregates becomes smaller. “We want to understand the implications of this finding to the toxicity, movement, and fate of fullerenes in the environment.”

Citric acid is well understood as a proxy for other kinds of organic acids, including those within cells. Some of the citrate-based spheres that Vikesland’s group discovered are similar to what happens intercellularly when human cells are exposed to C60, he said. “We think citrate and other organic acids with a carboxyl group make C60 more water soluble.”

Vikesland will present “Effects of small molecular weight acids on C60 aggregate formation and transport (ENVR 26)” to the Division of Environmental Chemistry at 1:35 p.m. Sunday, April 6, in room 235 of the Morial convention Center. Authors of the paper are Vikesland, civil and environmental engineering Ph.D. student Xiaojun Chang of Luoyang, Henan, China, and master’s degree student Laura K. Duncan of Augusta, Ga., and research assistant professor and TEM lab director Joerg R. Jinschek

Future environmental research will be done with simulated subsurface environments using a sand column to determine how these acidified masses move in ground water.

Vikesland will present Chang’s and his research about how C60 and citric acid interact to the Division of Colloid and Surface Chemistry on Wednesday, April 9, at 4:30 p.m. in 225 Morial Convention Center. He will present the results of various imaging analysis, such as atomic force microscopy. “We have no answers but we have a hypothesis, still unproven, that there are weak interactions between citrate and individual carbon molecules that cause the spherical shape,” Vikesland said.

The Vikesland group is exploring whether the C60-citrate interaction can be used to create reproducible shaped objects. Many fullerene-based products presently require solvents, which are then washed off. Unfortunately, the engineered fullerenes can retain solvents. Using citrate “is very green chemistry,” Vikesland said. “There are no solvents. It is a cleaner way to produce these things. Citrate may be an alternative.”

But there are challenges. “It’s not a hard bond but a weak attractive force, which makes these spherical aggregates challenging to work with. At the present time we don’t know how they will fall apart and what their products are,” Vikesland said.

In the meantime, the solvent issue aside, the current rush to put fullerenes into materials may not be wise “because we don’t understand what is going on,” said Vikesland. “If you have a face cream with fullerenes as an antioxidant – we don’t know how they will react. There are many organic acids in the environment.”

He concludes, “There are uncertainties. Everyone wants to prevent future problems.”

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>