Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation of freshwater fish biodiversity: a challenge for the countries of the South

27.03.2008
Humans have regularly been introducing exotic species into natural environments in order to provide for their nutritional necessities or meet less indispensable purposes such as horticulture, fishing or hunting.

However, the particular environments are not always adapted for hosting new arrivals. Past introduction attempts, such as that of wild rabbit into Australia or brown fario trout into Southern hemisphere water courses, led to an awareness that these different species, qualified by scientists as none-native, have the power to upset an ecosystem.

The 2002 Convention on Biodiversity recognized that the species introductions can cause regression of biological diversity, following destruction of natural habitats. Although it has long seemed likely that human activity plays a major role in such effects, no scientific study had yet yielded measurements of its involvement at planetary scale for a given group of species.

An international research team comprising IRD, CNRS and University of Toulouse scientists recently published a study that gave the first real demonstration that human activity is the main driving factor behind the establishment of exotic fish species populations in river ecosystems. Examination of data on presence of around 10 000 freshwater fish in 1055 river basins covering both 80% immersed lands and 80% of globally recorded freshwater fish species allowed identification of seven species-invasion hot-spots: the Pacific coast of North America and Central America, Patagonia, southern and western Europe, South Africa and Madagascar, central Asia, the South of Australia and New Zealand (See Map).

These regions are characterized by river basins where non-native species make up more than one quarter of the freshwater fish species recorded. Moreover, they are superimposed on biodiversity hot-spots which correspond to geographical zones a strong endemism rate and a very high total number of species.

The team also sought to determine the extent of the relative influence of the particular characteristics of each ecosystem and human activities on the diversity of the non-native fish species. Three hypotheses were tested: the “biotic resistance”, “biotic acceptance” and “human activity”. The first suggests that a high diversity of freshwater fish in the host ecosystem acts as a barrier to the establishment of non-native fish specie populations. The second postulates conversely that, for a given ecosystem, non-native species diversity follows that of native species because favourable ecological conditions for the latter are also suitable for the newly arrived species. As for the third, it takes account of the different indicators at river-basin scale (gross domestic product, percentage of land urbanized, population density), that can yield determination of the relation between anthropic pressure and non-native species diversity.

The three hypotheses’ relative weight was measured using statistical methods. For the whole set of river basins investigated, the environmental conditions of fluvial ecosystems were found to have practically no influence on the exotic species diversity. On the contrary, it is the human factors, and especially the intensity of economic activities –measured by the GDP, which determine the number of non-native species present in a river basin. These results thus suggest that the economic development foreseen in the developing countries should be accompanied by a rise in the number of non-native freshwater fish species. Given that biological invasions are considered as one of the main causes of biodiversity loss, such a scenario would probably be detrimental to the aquatic biodiversity conservation of these regions. This study indicates that exceptional river ecosystems, like the Amazon Basin in South America or that of the Congo in central Africa, are still hardly affected by species introduction. For example, no more than 1% of the 3000 species of fish recorded in the River Amazon are non-native species. Just as a considerable number of countries of the South are seeing their economic growth take off, this kind of study should be useful in the future for setting up an effective watch system for the surveillance of the exotic species colonizing the most biodiversity-rich natural environments and make it possible to apply the principle of precaution before they become invasive.

1. This research was conducted in conjunction with scientists from the ‘Groupe de recherche sur la gestion des écosystèmes’ of Antwerp University (Belgium) and the Centre Interniversitaire de Recherche sur le Saumon atlantique (CIRSA) of Laval University (Canada)

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas290.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>