Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device removes drinking water contaminants

14.06.2002


A Northwestern University environmental engineer has received a U.S. patent for a treatment device that renders perchlorate — a thyroid-damaging ingredient of rocket fuel and a drinking water problem — harmless. The applications extend beyond the safety of drinking water and this one pollutant.



Bruce E. Rittmann, John Evans Professor of Environmental Engineering at the Robert R. McCormick School of Engineering and Applied Science, received U.S. Patent No. 6,387,262 for a hollow-fiber membrane biofilm reactor, that, through a natural biochemical process of electron transfer, turns perchlorate into innocuous chloride.

The cost-effective and environmentally friendly system also works on nitrate, a contaminant from agricultural fertilizers that can cause methemoglobinemia, or blue-baby syndrome, in infants, and is expected to be successful with other oxidized pollutants, such as bromate, selenate, heavy metals, radionuclides, and a range of chlorinated solvents, including trichloroethylene, a problem in the semiconductor industry.


Currently there is no effective clean-up solution for perchlorate, which was discovered in the water supplies of a large number of states in the late 1990s, and existing methods are not always successful when dealing with other contaminants.

"Many emerging pollutants are difficult to treat with conventional methods," said Rittmann. "These methods do not destroy the contaminants but simply move them from place to place, from the water to a solid resin to a nasty brine that still contains the contaminants. Our simple method, which destroys the contaminant, should work for almost every oxidized pollutant, which means it has an incredible range of applications, including being used on more than drinking water."

Rittmann has teamed up with the environmental engineering firm Montgomery-Watson-Harza Engineers, Inc. to conduct a pilot study in La Puenta, Calif., treating groundwater that is highly contaminated with perchlorate and nitrate. Results have shown that the biofilm reactor can effectively treat 0.3 gallons of water per minute, removing perchlorate and nitrate at the same time.

The decontamination process takes advantage of a community of microorganisms that lives as a biofilm on the outer surface of the membranes in the system. The microorganisms, found naturally, act as catalysts for the transfer of electrons from hydrogen gas to the oxidized contaminant, such as perchlorate or nitrate. Chemically speaking, the oxidized contaminants are eager to receive electrons, which reduces them to harmless products. The hydrogen gas supplies the electrons, and the biofilm microorganisms are the agents for the transfer.

A bundle of 7,000 hollow-fiber membranes are in one of the pilot-study biofilm reactors, a column approximately 5 feet tall and 18 inches in diameter. Each membrane is like a long, very thin straw, only 280 micrometers in diameter (the width of a thick sewing thread). Hydrogen gas is fed to the inside of the membrane fibers, and the hydrogen diffuses through the membrane walls into the contaminated water that flows past the fibers. At this meeting point, on the outside of the membrane, bacteria attach to the surface because they gain energy from the process of transferring electrons and can grow and thrive. The contaminants are reduced to harmless end products — perchlorate to chloride and nitrate to nitrogen gas — while the hydrogen gas is oxidized to water.

"We are exploiting nature," said Rittmann. "Life is all about transferring electrons. We have an extraordinarily efficient system for bringing hydrogen and its electrons to oxidized pollutants, such as perchlorate, and reducing them to innocuous substances."

Hydrogen gas is an ideal electron donor for biological drinking water treatment as it is non-toxic and inexpensive, and Rittmann’s system has been shown to be safe. Another advantage is that the performance of the reactor can be controlled simply by adjusting the pressure of the hydrogen gas.

Rittmann also is conducting research on the microbial ecology of the bioreactor system in order to understand how it works. Which microorganisms are doing the work? How fast do they work? How do they achieve the essential reaction of electron transfer?

"By looking at the details of what’s going on in the biofilms, we can make the system even more reliable and efficient in cleaning up some of the most dangerous and newly discovered contaminants in drinking water, ground water and wastewater," said Rittmann.

The current research is supported by a grant from the U.S. Environmental Protection Agency and administered by the American Water Works Association Research Foundation.


Megan Fellman | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>