Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hungry sharks take strange walks to find food

29.02.2008
Sharks and other marine animals find food using a similar search pattern to the way people may shop, according to one of the largest analyses of foraging behaviour attempted so far – and the first such analysis of marine predators.

The results of the international study, published in the journal Nature today, shows that the animals’ behaviour seems to have evolved as a general ‘rule’ to search for sparsely distributed prey in the vast expanse of the ocean. This rule involves a special pattern of random movement known as a Levy Walk, where the predators use a series of small motions interspersed with large jumps to new foraging locations. This increases the chance of finding food, however widely scattered it might be.

Dr David Sims from the Marine Biological Association and the University of Plymouth, who led the research, said, ‘Systematic searching is not the most efficient strategy if you’re looking for sparse items. If you go to the supermarket to buy eggs you look for them in one place, and if you don’t find them there you choose another location to look in. You probably won’t start at one end of the supermarket and search every aisle. Predators increase energy gain by adopting the Levy Walk, so they can travel further to find food.’

The researchers analysed the dive data from sophisticated electronic tags attached to a diverse range of marine predators, such as sharks, tuna, cod, sea turtles and penguins, in various locations around the world. They compared this data to the distribution patterns of their prey and found similarities, suggesting that the predators have evolved this search rule to get the best possible results from their foraging expeditions.

Dr Sims said, ‘We developed a computer model from the foraging data, and this confirmed that the observed patterns were indeed optimal for naturally dynamic prey fields. The search rule seems to be a general solution for success in complex and changeable environments.’

Similar movement patterns appear to be present in other species’ behaviour, including human travel dynamics, hinting that the patterns discovered by the team may be universal. If so, they could prove useful for programming robots to be more successful when collecting samples from inhospitable places such as active volcanoes, the deep sea or on other planets. Understanding the patterns could also shed new light on how early humans explored and colonised the continents.

The research involved an international collaboration of behavioural ecologists, mathematicians and engineers from the UK, USA, Australia and New Zealand. It was funded principally by the Natural Environment Research Council, Defra, the Royal Society and the Fisheries Society of the British Isles.

Marion O'Sullivan | alfa
Further information:
http://www.nature.com/index.html
http://www.nerc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>