Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer protects grass

05.06.2002


To help the nature to recover from harmful impacts of the mining industry, Svetlana Mesyats and her team from the Geological Institute of the Kola Research Center RAS offer the method, which implies the application of a thin invisible polymeric film onto the soil surface and provides for a fast and successful minesite recultivation.Polymer Protects Grass

It is not surprising that such a polymeric covering is invented in Apatity. People leaving on the Cola Peninsula often need to deal with a destroyed soil cover and a bare infertile land. As a consequence of mining, a significant part of the peninsula is either stripped of the upper ground layer or buried under dumps of the barren rock. Water and wind erosion and sharp fluctuations in temperature make it impossible for a young grass to survive on this infertile ground, only clouds of dust fly over these bare lands. And such a situation is just the same in all mining and metallurgical areas in the North.

However, in the environs of Apatity the problem of dust storms has been solved. A thick grass cover has been created on barren rock dumps, and eyes and mouths of local population are no longer filled with the tons of dust. The idea is as simple as any stroke of genius.



Lawns are usually created the following way. A fertile soil is poured onto a certain plot of land, and a lawn grass is sown. To provide a high quality of lawn, the surface is covered with a coarse cloth (sacking) or a modern polymeric material (e.g., lutrosil). On average-quality or very large lawns, just a thin protective covering of ground is applied over seeds and the soil surface is slightly compacted to minimize erosion. Further success depends only on good luck. A strong rainstorm can wash off the surface layer of soil together with seeds at once, especially, if the lawn is situated in a gully or on a slope facing a road. So, all the work could be ruined. Of course, situation is rather different on lawns covered with sacking. The cloth protects the humus layer from being washed off or blown off together with seeds, decreases the evaporation of moisture, and makes it possible for grass germs to root in soil. In addition, slopes designed for lawns are stabilized using special concrete or wooden frameworks.

However, several hectares of damaged land cannot be covered with a cloth. But a protective covering could be dispersed over the soil surface like a fertilizer from an airplane. This is the way offered by ecologists and chemists from the Geological Institute. The scientists developed a polymeric covering "Biorekulat" for restoring vegetation of mine sites. In fact, this is a durable elastic film that if formed after applying an aqueous emulsion of polymer to the soil surface. Such a film effectively stabilizes the surface by gluing small soil particles together, and later they and seeds cannot be carried away by rainwater or wind. At the same time, the polymeric covering is porous, air- and water-permeable, and does not prevent the earth from breathing. Seeds are comfortable under such a film like under an elfin cloak: it saves heat and moisture and smoothens the fluctuations of temperature in soil. This screen is not an obstacle for young plants, which can grow through it easily.

This film itself is rather durable and stays for several years before beginning to disappear, as it is biodecomposable. It is frost- and heat-resistant: from minus forty to plus forty degrees Celsius. In fact, the most important thing is to let the seeds germinate and root the first year. The second year, the sod (grass-covered surface soil held together by matted roots) is formed, which protects soil from erosion and people from dust, and the covering becomes unnecessary. Thus, this method allows us to restore the soil-vegetation cover on a bare ground within two years, whereas a similar natural process would take decades. Besides, this method is ten times cheaper than the usual way of lawn creation. Using the polymeric film, one can succeed in restoring the soil-vegetation cover on the bare ground even without applying either seeds or a fertile ground. In the first case, one relies on the fact that soil always contains some seeds, and grass will appear without any sowing. In the second case, perennial grasses can be planted even on infertile land.

It should be mentioned that the Russian product "Bioreculat" attracted attention of the British known for their passion for ideal lawns. They consider using of this product not only for lawn treatment, but also for healing bare spots on golf-links.

In Russia, this invention was highly appreciated too. Recently, it won the Grand Prix and a gold medal at the Fifth International Salon of Industrial Property "Archimedes".

Olga Maksimenko | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>