Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer protects grass

05.06.2002


To help the nature to recover from harmful impacts of the mining industry, Svetlana Mesyats and her team from the Geological Institute of the Kola Research Center RAS offer the method, which implies the application of a thin invisible polymeric film onto the soil surface and provides for a fast and successful minesite recultivation.Polymer Protects Grass

It is not surprising that such a polymeric covering is invented in Apatity. People leaving on the Cola Peninsula often need to deal with a destroyed soil cover and a bare infertile land. As a consequence of mining, a significant part of the peninsula is either stripped of the upper ground layer or buried under dumps of the barren rock. Water and wind erosion and sharp fluctuations in temperature make it impossible for a young grass to survive on this infertile ground, only clouds of dust fly over these bare lands. And such a situation is just the same in all mining and metallurgical areas in the North.

However, in the environs of Apatity the problem of dust storms has been solved. A thick grass cover has been created on barren rock dumps, and eyes and mouths of local population are no longer filled with the tons of dust. The idea is as simple as any stroke of genius.



Lawns are usually created the following way. A fertile soil is poured onto a certain plot of land, and a lawn grass is sown. To provide a high quality of lawn, the surface is covered with a coarse cloth (sacking) or a modern polymeric material (e.g., lutrosil). On average-quality or very large lawns, just a thin protective covering of ground is applied over seeds and the soil surface is slightly compacted to minimize erosion. Further success depends only on good luck. A strong rainstorm can wash off the surface layer of soil together with seeds at once, especially, if the lawn is situated in a gully or on a slope facing a road. So, all the work could be ruined. Of course, situation is rather different on lawns covered with sacking. The cloth protects the humus layer from being washed off or blown off together with seeds, decreases the evaporation of moisture, and makes it possible for grass germs to root in soil. In addition, slopes designed for lawns are stabilized using special concrete or wooden frameworks.

However, several hectares of damaged land cannot be covered with a cloth. But a protective covering could be dispersed over the soil surface like a fertilizer from an airplane. This is the way offered by ecologists and chemists from the Geological Institute. The scientists developed a polymeric covering "Biorekulat" for restoring vegetation of mine sites. In fact, this is a durable elastic film that if formed after applying an aqueous emulsion of polymer to the soil surface. Such a film effectively stabilizes the surface by gluing small soil particles together, and later they and seeds cannot be carried away by rainwater or wind. At the same time, the polymeric covering is porous, air- and water-permeable, and does not prevent the earth from breathing. Seeds are comfortable under such a film like under an elfin cloak: it saves heat and moisture and smoothens the fluctuations of temperature in soil. This screen is not an obstacle for young plants, which can grow through it easily.

This film itself is rather durable and stays for several years before beginning to disappear, as it is biodecomposable. It is frost- and heat-resistant: from minus forty to plus forty degrees Celsius. In fact, the most important thing is to let the seeds germinate and root the first year. The second year, the sod (grass-covered surface soil held together by matted roots) is formed, which protects soil from erosion and people from dust, and the covering becomes unnecessary. Thus, this method allows us to restore the soil-vegetation cover on a bare ground within two years, whereas a similar natural process would take decades. Besides, this method is ten times cheaper than the usual way of lawn creation. Using the polymeric film, one can succeed in restoring the soil-vegetation cover on the bare ground even without applying either seeds or a fertile ground. In the first case, one relies on the fact that soil always contains some seeds, and grass will appear without any sowing. In the second case, perennial grasses can be planted even on infertile land.

It should be mentioned that the Russian product "Bioreculat" attracted attention of the British known for their passion for ideal lawns. They consider using of this product not only for lawn treatment, but also for healing bare spots on golf-links.

In Russia, this invention was highly appreciated too. Recently, it won the Grand Prix and a gold medal at the Fifth International Salon of Industrial Property "Archimedes".

Olga Maksimenko | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>