Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the dead to work for conservation biology

20.01.2011
Conservation paleobiologists dig deep to solve today's ecological, evolutionary questions

Conservation paleobiologists—scientists who use the fossil record to understand the evolutionary and ecological responses of present-day species to changes in their environment – are putting the dead to work.

A new review of the research in this emerging field provides examples of how the fossil record can help assess environmental impact, predict which species will be most vulnerable to environmental changes and provide guidelines for restoration.

The literature review by conservation paleobiologists Gregory P. Dietl of the Paleontological Research Institution and Cornell University and Karl W. Flessa of the University of Arizona is published in the January 2011 issue of the journal Trends in Ecology and Evolution. The National Science Foundation funded the research.

"Conservation paleobiologists apply the data and tools of paleontology to solving today's problems in biodiversity conservation," says Dietl, the director of collections at the Paleontological Research Institution.

The primary sources of data are "geohistorical," Dietl says, meaning the fossils, the geochemistry and the sediments of the geologic record.

"A conservation paleobiology perspective has the unique advantage of being able to identify phenomena beyond time scales of direct observation," he says.

Flessa says, "Such data are crucial for documenting the species we have already lost – such as the extinct birds of the Hawaiian islands -- and for developing more effective conservation policies in the face of an uncertain future."

Most conservation options are derived from modern-day observations alone, they state, and may not accurately predict the responses of species to the changing climates of the future.

Geohistorical records, the authors wrote, are therefore critical to identifying where—and how-- species survived long-ago periods of climate change

Ancient DNA, for example, has been used to show that the arctic fox (Alopex lagopus) was not able to move with shifting climates as its range contracted, eventually becoming extinct in Europe at the end of the Pleistocene. However, the species persisted in regions of northeastern Siberia where the climate was still suitable for arctic foxes.

In another tale from the beyond, fossil evidence suggests that the birds of the Hawaiian Islands suffered large-scale extinction around the time of the arrival of the Polynesians. Studies comparing the ecological characteristics of bird species before and after this extinction reveals a strong bias against larger-bodied and flightless, ground-nesting species.

The pattern suggests that hunting by humans played a role in the extinction of the flightless species. By the 18th century, the time the first Europeans arrived in the islands; most large-bodied birds had already disappeared. European colonization of the islands led to a second wave of extinctions.

Those birds that survived had traits that helped them weather two onslaughts.

"Conservation research too rarely makes use of geohistorical data," says H. Richard Lane, program director in the National Science Foundation Division of Earth Sciences, which funds both Dietl's and Flessa's work. "Most such studies focus on short timescales ranging from years to decades. Looking back farther—much farther—in time may be crucial to comprehending events unfolding today."

In their review, Dietl and Flessa cite a study on the frequency of insect damage to fossil angiosperm leaves in the Bighorn Basin of Wyoming dating from before, during and after the Paleocene-Eocene Thermal Maximum (PETM, some 55.8 million years ago).

The PETM, scientists believe, is one of the best deep-time analogs for current global climate change questions because global average temperatures during this time period rose by ~ 9-14F˚ (5-8˚C) in less than 10,000 years.

Results from the insect research suggest that herbivory intensified during the PETM global warming episode.

"This finding provides insights into how the human-induced rise in atmospheric carbon dioxide is likely to affect insect-plant interactions in the long run," the authors wrote, "which is difficult to predict from short-term studies that have highly species-specific responses."

Time-averaged information, as is captured in the geologic record, says Lane, allows us to sort out natural changes from those induced by human activities.

The dead can help us even in remote places like the Galapagos Islands.

Scientists have used the fossil pollen and plant record there to shows that at least six non-native or "doubtfully native" species were present before the arrival of humans. This baseline information, says Dietl, "is crucial to a current conservation priority in the Galapagos: the removal of invasive species."

An important role of geohistorical data is to provide access to a wider range of past environmental conditions—alternative worlds of every imaginable circumstance.

The past may lead to better conservation practices that are crucial for life, not death, on Earth.

The dead, it turns out, do tell tales.

Maja Anderson | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>