Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using the Potential of Waste Heat

09.12.2013
Siemens researchers analyze how different components of the future energy system can be combined in an optimized way.

In its latest issue the research magazine "Pictures of the Future" reports about the chances of this multi modal energy system. Scientists of Siemens' global research Corporate Techlology want to combine diverse energy sources, such as oil, gas, wind, solar, biomass, and waste heat in a way that ensures they produce electricity, heat, cooling, and potable water in the most efficient and environmentally friendly manner possible.



In most cases, only the individual aspects of such systems were examined until now - for example, approaches for feeding in energy from renewable sources. Now the researcher work with grids that consist of many components and study their interaction and the effect they have on overall stability.

One aspect the researchers are particularly interested is the waste heat from machines and other industrial equipment. Today, waste heat in the low-temperature range in particular is rarely used in an economically viable manner. However, this heat contains valuable energy that can be used to recycle waste water into drinking water, for example. With this in mind, Siemens researchers in Erlangen have developed a demonstration plant which uses waste heat within the temperature range of 70 to 120 degrees Celsius to vaporize wastewater. The resulting steam is channeled into a condenser, where it precipitates in a process that produces pure water and some concentrated wastewater.

In the prototype flows wastewater in from the top through insulated pipes. It then passes through several heat exchangers, where waste heat is used to raise the water's temperature. After that, the wastewater trickles through an evaporator and evaporates. A fan generates an air current that carries the vaporized water upward. The vapor condenses again on the right side, where the condenser is located. The separation is done. To use a minimal amount of electrical energy to transport as much water vapor as possible the temperature distribution and the air volume has to be regulated precisely. The next step could be a pilot facility that would purify 25 cubic meters of water per hour. That would be sufficient to treat the wastewater from bottling processes in the beverage industry. However, the technology can also be used to purify the wastewater generated by brewery processes and oil drilling operations.

The researchers have also built a heat pump that can raise temperatures to a maximum of 140 degrees Celsius - as opposed to the previous limit of 90 degrees. They use a special process fluid for the heat cycle. The new heat pump makes it possible to boost the temperature of industrial waste heat or heat from geothermal sources from between 70 and 90 to 130 degrees Celsius - the norm in district heating systems. The heat could be used to warm buildings.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Heat Blanket energy source waste heat waste management

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>