Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using the Potential of Waste Heat

09.12.2013
Siemens researchers analyze how different components of the future energy system can be combined in an optimized way.

In its latest issue the research magazine "Pictures of the Future" reports about the chances of this multi modal energy system. Scientists of Siemens' global research Corporate Techlology want to combine diverse energy sources, such as oil, gas, wind, solar, biomass, and waste heat in a way that ensures they produce electricity, heat, cooling, and potable water in the most efficient and environmentally friendly manner possible.



In most cases, only the individual aspects of such systems were examined until now - for example, approaches for feeding in energy from renewable sources. Now the researcher work with grids that consist of many components and study their interaction and the effect they have on overall stability.

One aspect the researchers are particularly interested is the waste heat from machines and other industrial equipment. Today, waste heat in the low-temperature range in particular is rarely used in an economically viable manner. However, this heat contains valuable energy that can be used to recycle waste water into drinking water, for example. With this in mind, Siemens researchers in Erlangen have developed a demonstration plant which uses waste heat within the temperature range of 70 to 120 degrees Celsius to vaporize wastewater. The resulting steam is channeled into a condenser, where it precipitates in a process that produces pure water and some concentrated wastewater.

In the prototype flows wastewater in from the top through insulated pipes. It then passes through several heat exchangers, where waste heat is used to raise the water's temperature. After that, the wastewater trickles through an evaporator and evaporates. A fan generates an air current that carries the vaporized water upward. The vapor condenses again on the right side, where the condenser is located. The separation is done. To use a minimal amount of electrical energy to transport as much water vapor as possible the temperature distribution and the air volume has to be regulated precisely. The next step could be a pilot facility that would purify 25 cubic meters of water per hour. That would be sufficient to treat the wastewater from bottling processes in the beverage industry. However, the technology can also be used to purify the wastewater generated by brewery processes and oil drilling operations.

The researchers have also built a heat pump that can raise temperatures to a maximum of 140 degrees Celsius - as opposed to the previous limit of 90 degrees. They use a special process fluid for the heat cycle. The new heat pump makes it possible to boost the temperature of industrial waste heat or heat from geothermal sources from between 70 and 90 to 130 degrees Celsius - the norm in district heating systems. The heat could be used to warm buildings.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Heat Blanket energy source waste heat waste management

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>