Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears no longer on 'thin ice': researchers say polar bears could face brighter future

22.12.2010
"When I first picked up the cub, she was biting my hand," explains wildlife biologist Bruce Marcot. He was trying to calm the squirming cub while its sedated mother slept nearby.

In the snowy spring of 2009, Portland-based Marcot traveled with several colleagues onto the frozen Arctic Ocean north of Alaska to study and survey polar bear populations. From their base of operations at the settlements of Deadhorse, next to Prudhoe Bay, Alaska, they ventured by small plane and helicopter over a wide area of the Beaufort Sea in a study to determine the bears' health and to learn the impact of warming Arctic temperatures on their population.

"From the helicopter, we located radio-collared polar bears by their signals. Then, swooping in like a cowboy after a bull, our lead scientist would dart the bear with a tranquilizer dart," explains Marcot. "We then landed, corralled any cubs, and made the sleeping mother comfortable on the sea ice while we studied her health, weighed her, took measurements, and changed her radio collar so she could be further tracked."

Marcot, a scientist at the Forest Service's Pacific Northwest Research Station, is a co-author on the recently published paper about the impact of climate change on polar bears, in the journal Nature. He was invited to be a member of the study team because of his expertise in the analysis and modeling of wildlife population viability. The study's lead scientist, Steven Amstrup, of the U.S. Geological Survey's Alaska Science Center, had asked Marcot several years earlier to join a polar bear science team organized to advise the U.S. Fish and Wildlife Service. That team examined and analyzed global polar bear populations, habitats, and climate change. They presented their results in 2007 before several federal agencies and the U.S. Department of the Interior, in Washington, D.C., and in 2008 the Federal government designated the polar bear as a globally threatened species.

The 2007 study projected that about two-thirds of the roughly 25,000 polar bears in the world would disappear by mid-century because of the effects of climate change and the ice melting in the Arctic. Now, in the December 2010 Nature study, Marcot and his colleagues learned that decline of the bear could be mitigated if greenhouse gas emissions are significantly reduced.

These findings may have implications for citizens and natural resource managers in the Pacific Northwest working to manage resources for a warming climate, particularly in high mountain areas.

For the past several years Marcot has collaborated with the U.S. Geological Survey's Alaska Science Center, the National Park Service, the U.S. Fish and Wildlife Service, and others on studies examining the impacts of climate change on wildlife and the environment.

The most recent study published in Nature, "Greenhouse Gas Mitigation Can Reduce Sea-ice Loss and Increase Polar Bear Persistence," was coauthored by Amstrup; Eric DeWeaver, National Science Foundation; David Douglas, U.S. Geological Survey, Alaska Science Center; Marcot; George Durner, U.S. Geological Survey; Cecilia Bitz, University of Washington; and David Bailey, National Center for Atmospheric Research, issue of Nature. It appears online at www http://www.nature.com/nature/journal/v468/n7326/full/nature09653.html

The study's key findings says Marcot are:

The results of modeling regional polar bear populations indicate a potentially brighter future for the species if global greenhouse gas concentrations can be kept under control at levels less than those expected under current conditions.

Sea ice habitat for polar bears will likely not face a "tipping point" of sudden catastrophic loss over the 21st century, particularly under a mitigation scenario to reduce global greenhouse gas emissions.

Even under relatively stringent mitigation reductions in future greenhouse gas concentration, polar bears in two of the four eco-regions, constituting about 2/3 of all current polar bear numbers, will still incur at least reductions in numbers and distribution. However, the best future outcome for these populations would result from a combination of mitigation control of greenhouse gas concentration with best on-the-ground management practices to control hunting and human activities such as levels of shipping, oil and gas activities, etc.

There will still be significant uncertainty as to the future of polar bear populations from the combination of all sources of stressors from climate change, direct human disruption, and other biological factors.

The team's study is significant. "It demonstrates for the first time that—and how—a combination of greenhouse gas mitigation and control of adverse human activities in the Arctic can lead to a more promising future for polar bear populations and their sea ice habitat," says Marcot. "It also provides specific predictions of the future, couched in terms of probabilities of polar bear population response that decision-makers could use in risk management."

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Sherri Richardson Dodge | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>