Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants could override climate change effects on wildfires

Paleoecological data reveal strong influence of vegetation changes on wildfire frequency

The increase in warmer and drier climates predicted to occur under climate change scenarios has led many scientists to also predict a global increase in the number of wildfires.

But a new study in the May issue of Ecological Monographs shows that in some cases, changes in the types of plants growing in an area could override the effects of climate change on wildfire frequency.

Philip Higuera of Montana State University and his colleagues show that although changing temperatures and moisture levels set the stage for changes in wildfire frequency, they can often be trumped by changes in the distribution and abundance of plants. Vegetation plays a major role in determining the flammability of an ecosystem, he says, potentially dampening or amplifying the impacts that climate change has on fire frequencies.

"Climate is only one control of fire regimes, and if you only considered climate when predicting fire under climate-change scenarios, you would have a good chance of being wrong," he says. "You wouldn't be wrong if vegetation didn't change, but the greater the probability that vegetation will change, the more important it becomes when predicting future fire regimes."

Higuera and his colleagues examined historical fire frequency in northern Alaska by analyzing sediments at the bottom of lakes. Using meter-long samples, called sediment cores, Higuera and his colleagues measured changes in the abundance of preserved plant parts, such as pollen, to determine the types of vegetation that dominated the landscape during different time periods in the past. Like rings in a tree, different layers of sediment represent different times in the past.

The researchers used radiocarbon dating to determine the sediment's age, which dates as far back as 15,000 years. They then measured charcoal deposits in the sediment to determine fire frequency during time periods dominated by different vegetation. Finally, they compared their findings to known historical climate changes.

In many cases, the authors discovered, changes in climate were less important than changes in vegetation in determining wildfire frequency. Despite a transition from a cool, dry climate to a warm, dry climate about 10,500 years ago, for example, the researchers found a sharp decline in the frequency of fires. Their sediment cores from that time period revealed a vegetation change from flammable shrubs to fire-resistant deciduous trees, a trend which Higuera thinks was enough to offset the direct effects of climate on fire frequencies.

"In this case, a warmer climate was likely more favorable for fire occurrence, but the development of deciduous trees on the landscape offset this direct climatic effect. Consequently, we see very little fire," Higuera says.

Similarly, during the development of the modern spruce-dominated forest about 5000 years ago, temperatures cooled and moisture levels increased, which – considered alone – would create unfavorable conditions for frequent fires. Despite this change, the authors observed an increase in fire frequency, a pattern they attribute to the high flammability of the dense coniferous forests.

Higuera thinks this research has implications for predictions of modern-day changes in fire regimes based on climate change. These findings, Higuera says, emphasize that predicting future wildfire frequency shouldn't hinge on the direct impacts of climate change alone.

"Climate affects vegetation, vegetation affects fire, and both fire and vegetation respond to climate change," he says. "Most importantly, our work emphasizes the need to consider the multiple drivers of fire regimes when anticipating their response to climate change."

To access high-resolution images associated with this release, contact Christine Buckley at

The Ecological Society of America is the world's largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four journals and convenes an annual scientific conference.

Philip Higuera | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>