Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Oxygen Makes Pollution Worse

01.10.2009
Oxidation of sulfides in mining wastes produces high concentrations of sulfate, iron, and other metals, and frequently also very low pH values.

Compared to fine-grain mine tailings, produced in ore treatment by flotation and other techniques, waste rock is just displaced material comprising large size particles and deposited in waste rock piles. In waste rock piles with high permeability and sulfide content, the oxidation of sulfides produces heat, and temperatures may reach very high values.

Air with oxygen is sucked into the pile in convection, and this accelerates the pyrite oxidation rate. GenFeration of contaminants is then much higher than in the oxygen diffusion typical for mine tailings, and environmental impact may be severe.

J. César da Silva and E. Amaral Vargas Jr. (both of Dep. of Civil Engineering, Pontifical Catholic University, Rio de Janeiro, Brazil), and O. Sracek (OPV s.r.o. [Protection of Groundwater Ltd.] and Masaryk University, Czech Republic) describe details of the development of the THERMOX program and its application in simulation of the behavior of waste rock piles in the November issue of Vadose Zone Journal.

The THERMOX program enables the evaluation of environmental impact of waste rock piles under different scenarios (e.g., varying climatic conditions, different geometries of a pile, etc.). On a subsequent stage, different mitigation and remediation options can also be evaluated using the program. The program is highly versatile and may be used in other applications as well, including sequestration of CO2 and multiphase transport of organic contaminants.

The waste rock pile at the Doyon Mine site in northern Québec, Canada was used for the analyses. Both field studies and numerical modeling revealed a zone of fast convective oxygen supply close to the pile slope and a zone of much slower oxygen supply in the pile core. Convective oxygen supply close to the pile slope results in high temperatures and concentrations of dissolved contaminants. Internal evaporation further enriches the already very concentrated pore solutions. Presence of internal evaporation has also been confirmed by the application of stable isotopes deuterium and oxygen-18 at the Doyon Mine site.

Scientists from Civil Engineering Department at Pontifical Catholic University in Rio de Janeiro, Brazil have been working for long time on numerical modeling of environmental and geomechanical problems. The program THERMOX for modeling of processes in waste rock piles with convective oxygen supply was developed by J. César da Silva in the frame of his Ph.D. thesis under supervision of E.A. Vargas, Jr. and O. Sracek. The third author worked on waste rock piles characterization and modeling at Université Laval, Quebéc, Canada, with R. Lefebvre and late P. Gélinas. Data from their study site, the Doyon Mine, were used for verification of the THERMOX program. Currently he works at the consulting company OPV s.r.o. (Protection of Groundwater Ltd) in Prague, Czech Republic, and at the Institute of Geological Sciences, Faculty of Science, Masaryk University in Brno, Czech Republic.

Ongoing research at Pontifical Catholic University in cooperation with the company OPV s.r.o. will explore the use of THERMOX for the study of other sites in Brazil, the Czech Republic, and elsewhere, such as the waste rock pile in Poços de Caldas.

Photo: Waste rock pile from past uranium mining in Poços de Caldas, Brazil, where efforts have been made to minimize acid leachate seepage at the pile base.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/vzj/view/sept-13-2009/v08-0156.pdf.

Vadose Zone Journal, http://www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone, the mostly unsaturated zone between the soil surface and the permanent groundwater table. VZJ is a peer-reviewed, international, online journal publishing reviews, original research, and special section across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>