Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans will become oxygen depleted if fossil-fuel use remains unchecked

27.02.2009
Researchers in Denmark have shown that unless human-induced greenhouse-gas emissions are substantially reduced, large areas of the world's oceans will become oxygen depleted and hostile to fish and shellfish.

The study is published in the journal Nature Geoscience. The scientists used a computer model developed at the Danish Centre for Earth System Science (DCESS) that analyses global changes extending 100,000 years into the future.

The DCESS model includes atmosphere, ocean, ocean-sediment, land-biosphere and lithosphere modules. According to the study, it reproduces 'observed evolutions since 1765 of key climate metrics including atmosphere and ocean warming, atmospheric gas contents and ocean and land-biosphere CO2 uptakes'.

Two emissions scenarios of the Intergovernmental Panel on Climate Change (IPCC) were evaluated: one with a moderate (3°C) temperature increase and one with a high (4.8°C) temperature rise. In both simulations, there was oxygen loss in the upper 500m of the ocean, largely in response to surface-layer warming. Importantly, overturning circulation in the deep ocean, which pulls oxygenated surface waters down to the depths of the ocean, decreased. The high-emissions scenario in particular predicted 'severe, long-term ocean oxygen depletion,' and it was clear that the suboxic regions of the ocean, which are void of fish and other larger creatures, would expand in both cases.

Observations in the oceans already show that suboxic areas are expanding as the atmosphere and ocean warm. In line with this and other supporting observations, the model projects a three- to seven-fold expansion in suboxic zones. The authors explain that as suboxic zones expand, different microbes and plankton take over. This forces a shift towards nitrogen fixers, which the researchers say would probably force large, unpredictable changes in ocean ecosystem structure and productivity, with serious consequences.

The study's conclusions are simple: 'Reduced fossil-fuel emissions would be needed to limit ongoing oxygen depletion and its long-term adverse effects.'

Extreme oceanic oxygen depletion events are thought to be behind some of the large extinction events in the Earth's history, including the largest such event 250 million years ago.

More informations:
Danish Centre for Earth System Science:
www.dcess.dk
Nature Geoscience:
www.nature.com/ngeo/

| CORDIS
Further information:
http://www.kooperation-international.de
http://www.dcess.dk
http://www.nature.com/ngeo/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>