Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans will become oxygen depleted if fossil-fuel use remains unchecked

27.02.2009
Researchers in Denmark have shown that unless human-induced greenhouse-gas emissions are substantially reduced, large areas of the world's oceans will become oxygen depleted and hostile to fish and shellfish.

The study is published in the journal Nature Geoscience. The scientists used a computer model developed at the Danish Centre for Earth System Science (DCESS) that analyses global changes extending 100,000 years into the future.

The DCESS model includes atmosphere, ocean, ocean-sediment, land-biosphere and lithosphere modules. According to the study, it reproduces 'observed evolutions since 1765 of key climate metrics including atmosphere and ocean warming, atmospheric gas contents and ocean and land-biosphere CO2 uptakes'.

Two emissions scenarios of the Intergovernmental Panel on Climate Change (IPCC) were evaluated: one with a moderate (3°C) temperature increase and one with a high (4.8°C) temperature rise. In both simulations, there was oxygen loss in the upper 500m of the ocean, largely in response to surface-layer warming. Importantly, overturning circulation in the deep ocean, which pulls oxygenated surface waters down to the depths of the ocean, decreased. The high-emissions scenario in particular predicted 'severe, long-term ocean oxygen depletion,' and it was clear that the suboxic regions of the ocean, which are void of fish and other larger creatures, would expand in both cases.

Observations in the oceans already show that suboxic areas are expanding as the atmosphere and ocean warm. In line with this and other supporting observations, the model projects a three- to seven-fold expansion in suboxic zones. The authors explain that as suboxic zones expand, different microbes and plankton take over. This forces a shift towards nitrogen fixers, which the researchers say would probably force large, unpredictable changes in ocean ecosystem structure and productivity, with serious consequences.

The study's conclusions are simple: 'Reduced fossil-fuel emissions would be needed to limit ongoing oxygen depletion and its long-term adverse effects.'

Extreme oceanic oxygen depletion events are thought to be behind some of the large extinction events in the Earth's history, including the largest such event 250 million years ago.

More informations:
Danish Centre for Earth System Science:
www.dcess.dk
Nature Geoscience:
www.nature.com/ngeo/

| CORDIS
Further information:
http://www.kooperation-international.de
http://www.dcess.dk
http://www.nature.com/ngeo/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>