Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Islands Fuel Productivity and Carbon Sequestration Through Natural Iron Fertilization

02.02.2009
An experiment to study the effects of naturally deposited iron in the Southern Ocean has filled in a key piece of the puzzle surrounding iron’s role in locking atmospheric carbon dioxide (CO2) in the ocean.

The research, conducted by an international team led by Raymond Pollard of the National Oceanography Centre, Southampton, and included Matthew Charette, a marine chemist at the Woods Hole Oceanographic Institution (WHOI), found that natural iron fertilization enhanced the export of carbon to the deep ocean. The research was published January 29, 2009, in the journal Nature.

Scientists have generally accepted the fact that biological productivity in large areas of the Southern Ocean is limited by the supply of iron, an important micronutrient for phytoplankton. However, downstream of ocean islands in this study area, massive phytoplankton blooms have been observed, leading to the idea that the islands themselves are somehow fertilizing the ocean with iron. The team showed that this natural iron fertilization enhanced phytoplankton growth and productivity and the amount of carbon exported from the surface layer (100 meters) by two to three times. Moreover, they found that the amount of carbon stored at 3,000 meters and in the sediment was similarly two to three times higher beneath the natural fertilized region than for the nearby iron-poor region.

“This work demonstrated for the first time that Southern Ocean phytoplankton blooms fueled by natural sources of iron have the potential to sequester carbon in the deep ocean,” said Charette.

The team conducted their experiment in 2004-2005 on the seas around the Crozet Islands and Plateau at the northern boundary of the Southern Ocean, about 1,400 miles (2,200 kilometers) southeast of South Africa. These seas provided a natural laboratory, because each spring the waters north of Crozet experience an enormous bloom containing billions of individual phytoplankton and covering 120,000 square kilometers (the size of Ireland). In contrast, the area south of Crozet experiences only a small, short bloom later in the season.

“Our first question was, ‘where does the iron come from?’” said Charette. “Airborne dust wasn’t the solution — there isn’t enough exposed soil on Crozet for winds to carry iron from the island to the deep water where the bloom occurs. While other studies concluded that upwelling from the deep ocean was the main source of the iron, we wanted to test the hypothesis that the iron was coming from the island itself and the iron-rich sediments in the shallow water and the plateau area around it.”

Since the currents move from south to north over Crozet, the researchers reasoned that iron could be entrained in the water column as it flows over the plateau. First, they needed a way to understand how long it would take iron to travel from the island’s shore to the bloom site and if the rate of supply was enough to kick-start and sustain the bloom for several months. Iron concentrations in the water wouldn’t tell them where it came from, so the team sampled waters around Crozet looking for naturally-occurring radium isotopes, which, like iron, originate in the sediments and can therefore be used to quantify the amount of iron that the islands and surrounding sediments can supply to the bloom area. The decaying isotopes provided a built-in clock for the investigators to determine how quickly the water moves over the plateau and into deeper water. The distribution of radium in the water column demonstrated that the source of the iron was the island and the sediments in the shallow water around it and the plateau.

A second question the team sought to answer was whether the differences in the blooms between the north and south sides of Crozet would result in greater amounts of carbon held in the deep ocean. Using sediment traps and sediment cores, the researchers uncovered the first evidence that carbon deposited at 3,000 meters and in the sediment was two to three times higher beneath the natural fertilized region than for the nearby iron-poor region. In addition, the sediment record shows that this has been so throughout the Holocene (about 10,000 years ago until present).

In recent years, schemes to fight global warming have included sequestering carbon in the deep ocean by fertilizing the ocean with iron to artificially induce plankton blooms. As public interest in these ideas has increased, the authors point out that the amount of carbon sequestered in the deep ocean for a given input of iron falls far short of previous geoengineering estimates, “with significant implications for proposals to mitigate the effects of climate change through purposeful addition of iron to the ocean,” wrote lead author Pollard.

Support for this project came from the Natural Environment Research Council and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Stephanie Murphy | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>