Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Islands Fuel Productivity and Carbon Sequestration Through Natural Iron Fertilization

02.02.2009
An experiment to study the effects of naturally deposited iron in the Southern Ocean has filled in a key piece of the puzzle surrounding iron’s role in locking atmospheric carbon dioxide (CO2) in the ocean.

The research, conducted by an international team led by Raymond Pollard of the National Oceanography Centre, Southampton, and included Matthew Charette, a marine chemist at the Woods Hole Oceanographic Institution (WHOI), found that natural iron fertilization enhanced the export of carbon to the deep ocean. The research was published January 29, 2009, in the journal Nature.

Scientists have generally accepted the fact that biological productivity in large areas of the Southern Ocean is limited by the supply of iron, an important micronutrient for phytoplankton. However, downstream of ocean islands in this study area, massive phytoplankton blooms have been observed, leading to the idea that the islands themselves are somehow fertilizing the ocean with iron. The team showed that this natural iron fertilization enhanced phytoplankton growth and productivity and the amount of carbon exported from the surface layer (100 meters) by two to three times. Moreover, they found that the amount of carbon stored at 3,000 meters and in the sediment was similarly two to three times higher beneath the natural fertilized region than for the nearby iron-poor region.

“This work demonstrated for the first time that Southern Ocean phytoplankton blooms fueled by natural sources of iron have the potential to sequester carbon in the deep ocean,” said Charette.

The team conducted their experiment in 2004-2005 on the seas around the Crozet Islands and Plateau at the northern boundary of the Southern Ocean, about 1,400 miles (2,200 kilometers) southeast of South Africa. These seas provided a natural laboratory, because each spring the waters north of Crozet experience an enormous bloom containing billions of individual phytoplankton and covering 120,000 square kilometers (the size of Ireland). In contrast, the area south of Crozet experiences only a small, short bloom later in the season.

“Our first question was, ‘where does the iron come from?’” said Charette. “Airborne dust wasn’t the solution — there isn’t enough exposed soil on Crozet for winds to carry iron from the island to the deep water where the bloom occurs. While other studies concluded that upwelling from the deep ocean was the main source of the iron, we wanted to test the hypothesis that the iron was coming from the island itself and the iron-rich sediments in the shallow water and the plateau area around it.”

Since the currents move from south to north over Crozet, the researchers reasoned that iron could be entrained in the water column as it flows over the plateau. First, they needed a way to understand how long it would take iron to travel from the island’s shore to the bloom site and if the rate of supply was enough to kick-start and sustain the bloom for several months. Iron concentrations in the water wouldn’t tell them where it came from, so the team sampled waters around Crozet looking for naturally-occurring radium isotopes, which, like iron, originate in the sediments and can therefore be used to quantify the amount of iron that the islands and surrounding sediments can supply to the bloom area. The decaying isotopes provided a built-in clock for the investigators to determine how quickly the water moves over the plateau and into deeper water. The distribution of radium in the water column demonstrated that the source of the iron was the island and the sediments in the shallow water around it and the plateau.

A second question the team sought to answer was whether the differences in the blooms between the north and south sides of Crozet would result in greater amounts of carbon held in the deep ocean. Using sediment traps and sediment cores, the researchers uncovered the first evidence that carbon deposited at 3,000 meters and in the sediment was two to three times higher beneath the natural fertilized region than for the nearby iron-poor region. In addition, the sediment record shows that this has been so throughout the Holocene (about 10,000 years ago until present).

In recent years, schemes to fight global warming have included sequestering carbon in the deep ocean by fertilizing the ocean with iron to artificially induce plankton blooms. As public interest in these ideas has increased, the authors point out that the amount of carbon sequestered in the deep ocean for a given input of iron falls far short of previous geoengineering estimates, “with significant implications for proposals to mitigate the effects of climate change through purposeful addition of iron to the ocean,” wrote lead author Pollard.

Support for this project came from the Natural Environment Research Council and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Stephanie Murphy | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>