Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Notre Dame study proposes changes in New Orleans area levee systems

25.07.2013
Less may mean more when it comes to the levee systems designed to protect New Orleans from hurricanes.

That's the conclusion of a new study by a team of University of Notre Dame researchers led by Joannes Westerink, co-developer of the authoritative computer model for storm surge used by the U.S. Army Corps of Engineers, the Federal Emergency Management Agency (FEMA) and the state of Louisiana to determine water levels due to hurricane surge and to design levee heights and alignments.

The lower Mississippi River south of New Orleans protrudes into the Gulf of Mexico and man-made levees line the west bank of the river for 55 kilometers of what is known as the Lower Plaquemines section. There are no levees on the east side of this stretch of the river. Westerink points out that, historically, sustained easterly winds from hurricanes have directed storm surge across Breton Sound into the Mississippi River and against its west bank levees.

"This study clearly shows that the man-built west bank levee on the lower Mississippi River enhance the capture storm surge by the river, " Westerink said. "The surges are generated by the prevalent easterly winds that are common for regional hurricanes, but they spill into the river. These surges then propagate upriver endangering New Orleans from the river side."

As an alternative, the study shows that the lowering of man-made levees along the Lower Plaquemines river section to their natural state, to allow storm surge to partially pass across the Mississippi River, will decrease storm surge upriver toward New Orleans.

"By eliminating the 55 kilometers of man-made levees on the west bank of the river from Pointe a la Hache and Venice, the surges propagating in the river from Pointe a la Hache past New Orleans will be lowered by up to two meters," Westerink said. "This would save billions of dollars in levee construction to protect communities upriver from Pointe a la Hache."

The study also shows that the size of surges captured by the river actually decreases with a high stage river.

"While higher flow and stages on the river do cause the storm surge to rise on top of the river water levels, causing overall higher water levels for a specific hurricane, the storm surge does not simple linearly add to the pre-storm river water levels," Westerink said. "In fact, the surges captured by the river reduce as the river water levels rise."

The researchers are aware that eliminating the man-made levees on the west bank might potentially endanger the few sparsely populated areas along the lower west bank of the Mississippi.

"For the few communities south of the Pointe a la Hache, the study suggests building strong and high ring citadel levees around them and then connecting these communities with a bride, much as the Florida Keys are," Westerink said.

The researchers note that, historically, the design of Southeast Louisiana's hurricane flood risk reduction system has hinged on raising and adding levees in response to river or hurricane events that impact the region. Now, it may be time to think and build smarter.

"The study suggests building smarter citadel flood protection systems in the delta instead of long north-south linear systems that follow the river," Westerink said. "This reduces flooding risk, works with nature in that sediments can get to the delta from both the river and from hurricanes and thus build up the delta, and reduces levee construction costs by billions," Westerink said.

The group's study appears in the Journal of Waterway, Port, Coastal and Ocean Engineering.

Joannes Westerink | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>