Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame researchers are providing insights into elephant behavior and conservation issues

29.02.2012
Last year, Kenya lost 278 elephants to poachers, as compared to 177 in 2010. On the continent of Africa as whole, elephants have declined from an estimated 700,000 in 1990 to 360,000 today due to the demands of the ivory trade.

Spend some time with University of Notre Dame researchers Elizabeth Archie and Patrick Chiyo and you'll gain a better understanding of just what a tragic loss elephant poaching is.

A thinking, reasoning species with extraordinary memories, a strong sense of families and caring and nurturing natures are increasingly at the risk of extinction.

Archie's Notre Dame lab combines fieldwork and genetics research to understand the causes and consequences of social behavior in wild mammals. Her research team examines how migration, mating and social patterns impact the genetics and evolution of a species and its fitness and susceptibility to diseases.

Archie, Clare Booth Luce Assistant Professor of Biology, and Chiyo, a Moreau postdoctoral fellow, use research techniques that range from behavioral observations of wild animals to noninvasive genetic tools to genotype species and their parasites and patterns.

The research lab studies baboons in and elephants in Kenya. Archie and Chiyo work with the Amboseli Elephant Research Project (AERP), located just north of Mount Kilimanjaro in Kenya, which is the longest running study of wild elephants.

In the field, the researchers observe the behavior of the elephants and collect samples for genetic analysis, usually from noninvasive sources, such as dung. In their Notre Dame lab, they use the dung samples to characterize the parasites infecting individual animals and extract DNA to conduct genetic analysis.

Their field work and genetic analysis are revealing fascinating insights into elephant population genetics and social behavior, as well as how human activities alter elephants' social and genetic structures.

Their research has found, for example, that female elephants form strong and lasting social ties with the members of their natal core group. Male elephants, by contrast, disperse from their core natal group at maturity and never join a new core group permanently.

Poaching interrupts the beneficial female social relationships and could lead to lower reproductive rates for females, further reducing the species. For male elephants, age is an important predictor of reproductive success. Poaching appears to reduce the age of first reproduction for males and lead to a reproductive skew, which may increase the rate at which genetic diversity is lost from natural elephant populations.

Archie and Chiyo have also investigated the "crop raiding" behavior of African elephants. Scientists have determined that crop raiding is a male elephant behavior and that not all males participate. The Notre Dame researchers found that up to 20 percent of males may be crop raiders and males are twice as likely to raid at their reproductive peak.

Males over 45 were twice as likely to raid, although some males in their twenties also participated in the raiding. The researchers discovered that younger males were more likely to raid if they were following older role models.

These and other research insights are demonstrating how genetic tolls can be used to understand and preserve social species.

Elizabeth Archie | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>