Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame researchers are providing insights into elephant behavior and conservation issues

29.02.2012
Last year, Kenya lost 278 elephants to poachers, as compared to 177 in 2010. On the continent of Africa as whole, elephants have declined from an estimated 700,000 in 1990 to 360,000 today due to the demands of the ivory trade.

Spend some time with University of Notre Dame researchers Elizabeth Archie and Patrick Chiyo and you'll gain a better understanding of just what a tragic loss elephant poaching is.

A thinking, reasoning species with extraordinary memories, a strong sense of families and caring and nurturing natures are increasingly at the risk of extinction.

Archie's Notre Dame lab combines fieldwork and genetics research to understand the causes and consequences of social behavior in wild mammals. Her research team examines how migration, mating and social patterns impact the genetics and evolution of a species and its fitness and susceptibility to diseases.

Archie, Clare Booth Luce Assistant Professor of Biology, and Chiyo, a Moreau postdoctoral fellow, use research techniques that range from behavioral observations of wild animals to noninvasive genetic tools to genotype species and their parasites and patterns.

The research lab studies baboons in and elephants in Kenya. Archie and Chiyo work with the Amboseli Elephant Research Project (AERP), located just north of Mount Kilimanjaro in Kenya, which is the longest running study of wild elephants.

In the field, the researchers observe the behavior of the elephants and collect samples for genetic analysis, usually from noninvasive sources, such as dung. In their Notre Dame lab, they use the dung samples to characterize the parasites infecting individual animals and extract DNA to conduct genetic analysis.

Their field work and genetic analysis are revealing fascinating insights into elephant population genetics and social behavior, as well as how human activities alter elephants' social and genetic structures.

Their research has found, for example, that female elephants form strong and lasting social ties with the members of their natal core group. Male elephants, by contrast, disperse from their core natal group at maturity and never join a new core group permanently.

Poaching interrupts the beneficial female social relationships and could lead to lower reproductive rates for females, further reducing the species. For male elephants, age is an important predictor of reproductive success. Poaching appears to reduce the age of first reproduction for males and lead to a reproductive skew, which may increase the rate at which genetic diversity is lost from natural elephant populations.

Archie and Chiyo have also investigated the "crop raiding" behavior of African elephants. Scientists have determined that crop raiding is a male elephant behavior and that not all males participate. The Notre Dame researchers found that up to 20 percent of males may be crop raiders and males are twice as likely to raid at their reproductive peak.

Males over 45 were twice as likely to raid, although some males in their twenties also participated in the raiding. The researchers discovered that younger males were more likely to raid if they were following older role models.

These and other research insights are demonstrating how genetic tolls can be used to understand and preserve social species.

Elizabeth Archie | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>