Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of soot particle discovered from wildfire emissions

07.07.2014

Enhanced warming effects could change current estimates of climate forcing

Every year, wildfires clear millions of hectares of land and emit around 34-percent of global soot mass into the atmosphere. In certain regions, such as Southeast Asia and Russia, these fires can contribute as much as 63-percent of regional soot mass.

Soot Superagregattes from Wildfires

These images show typical soot superagregattes observed with an electron microscope in wildfire smoke samples collected from three fires in Northern California, New Mexico and Mexico City.

Credit: Desert Research Institute

In a paper published in Nature Scientific Reports, a team of scientists led by Rajan Chakrabarty from Nevada's Desert Research Institute report the observation of a previously unrecognized form of soot particle, identified by the authors as "superaggregates," from wildfire emissions. These newly identified particles were detected in smoke plumes from wildfires in Northern California, New Mexico, Mexico City, and India.

For several decades, scientists have been trying to quantitatively assess the impacts of wildfire soot particles on climate change and human health. However, due to the unpredictability of wildfire occurrences and the extreme difficulty in sampling smoke plumes in real-time, accurate knowledge of wildfire-emitted soot physical and optical properties has eluded the scientific community.

... more about:
»DRI »NASA »Nevada »combustion »emissions »properties »soot »vehicles »wildfires

Unlike conventional sub-micrometer size soot particles emitted from vehicles and cook stoves, superaggregates are on average ten times longer and have a more compact shape. However, these particles have low effective densities which, according to the authors, gives them similar atmospheric long-range transportation and human lung-deposition characteristics to conventional soot particles.

"Our observations suggest that we cannot simply assume a universal form of soot to be emitted from all combustion sources. Large-scale combustion sources, such as wildfires, emit a different form of soot than say, a small-scale, controlled combustion source, such as vehicles." says Chakrabarty, who also holds a faculty appointment at Washington University in St. Louis.

The study points to the need for revisiting the soot formation mechanism in wildfires, he adds.

The multi-institutional research team first detected the ubiquitous presence of soot superaggregates in smoke plumes from the 2012 Nagarhole National Forest fire in western India.

To verify the presence of superaggregate particles in other fires around the world, the team next analyzed smoke samples collected from the 2010 Millerton Lake fire in Northern California, and the 2011 Las Conchas fire in New Mexico, as well as wildfires near Mexico City. The authors found that a large portion of soot emitted during the flaming phase of these fires were superaggregates.

To assess the potential impact of superaggregates on global climate, scientists also calculated the radiative properties of soot superaggregates using numerically-exact electromagnetic theory.

"We found that superaggregates contribute up to 90-percent more warming than spherical sub-micrometer soot particles, which current climate models use," said Chakrabarty. "These preliminary findings warrant further research to quantify the significant impact these particles may have on climate, human health, and air pollution around the world."

###

This study was a collaboration between researchers from the Desert Research Institute; Washington University in St. Louis; Michigan Technological University; Los Alamos National Laboratory; and the NASA Goddard Institute for Space Studies.

This research was funded by NASA (NNX10AR89A, NNX11AB79G and NNX12AN97H), the U.S. Department of Energy Atmospheric System Research (DE-SC0010019 and F265-LANL(PI-MKD)), the U.S. National Science Foundation Division of Atmospheric and Geospace Sciences (ATM07-21142), and the Desert Research Institute.

To read the full text in Nature Scientific Reportshttp://www.nature.com/srep/2014/140701/srep05508/full/srep05508.html

About the Desert Research Institute: DRI, the nonprofit research campus of the Nevada System of Higher Education, strives to be the world leader in environmental sciences through the application of knowledge and technologies to improve people's lives throughout Nevada and the world.

All DRI news releases available at: http://news.dri.edu/

Justin Broglio | Eurek Alert!

Further reports about: DRI NASA Nevada combustion emissions properties soot vehicles wildfires

More articles from Ecology, The Environment and Conservation:

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Are Fish Getting High on Cocaine?
28.07.2015 | McGill University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>