Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New approach can predict impact of climate change on species that can’t get out of the way


When scientists talk about the consequences of climate change, it can mean more than how we human beings will be impacted by higher temperatures, rising seas and serious storms.

Plants and trees are also feeling the change, but they can’t move out of the way. Researchers at the University of Maryland Center for Environmental Science and University of Vermont have developed a new tool to overcome a major challenge of predicting how organisms may respond to climate change.

“When climate changes, organisms have three choices: migrate, adapt, or go extinct,” said lead author Matt Fitzpatrick of the University of Maryland Center for Environmental Science’s Appalachian Laboratory. “We’re bringing the ability to quantify that adaptation piece that had largely been missing up to this point.”

Organisms are adapted to live in certain environments and not others. However climate change is forcing them to live in climates to which they may not be well adapted. Animals can move around, but things like plants and trees are rooted in the ground and must withstand climate change or die. 

Scientists have combined genetic analyses with new modeling approaches for the first time to help identify how well balsam popular trees are adapted to handle climate change. The scientists sampled the genetic code of 400 trees from 31 locations across northern North America and combined the genetic variations with computer modeling techniques to map how important genes differ within balsam poplar and to locate where trees may have the best chance of survival in a rapidly warming world.

Up until now, scientists have sought to quantify the risk of climate change to different species by mapping where those species occur today based on climate and then predicting where they may occur in the future. For instance, models for North American tree species often predict them to occur further north as climate warms.

“The problem with the approach is you’re assuming all individuals within a species are identical, like assuming all humans will respond identically to an illness,” said Fitzpatrick. “Some will respond differently given different genetic backgrounds. 

It turns out that all members of a species won’t react the same way to climate change. Some poplar trees are already adapted genetically to handle climate changes expected over the next few decades while others are not--just like some people a more likely to survive a disease than others. 

Increasingly local adaptation to climate is being studied at the molecular level by identifying which genes control climate adaptation and how these vary between individuals. This type of modeling of variation in genetic makeup represents an important advance in understanding how climate change may impact biodiversity.

“We’ve developed the techniques to associate genetic variation to climate and to map where individuals may and may not be pre-adapted to climates expected in the future,” said Fitzpatrick. “It’s important to know where these places are. This gives us a way to link climate responses more closely to the biology than we were able to do previously.”

The study, “Ecological genomics meets community-level modeling of biodiversity: mapping the genomic landscape of current and future environmental adaptation,” was published by Matthew Fitzpatrick of the University of Maryland Center for Environmental Science and Steven Keller of the University of Vermont. It appeared in the October 1 issue of Ecology Letters.

Amy Pelsinsky | Eurek Alert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>