Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach can predict impact of climate change on species that can’t get out of the way

02.10.2014

When scientists talk about the consequences of climate change, it can mean more than how we human beings will be impacted by higher temperatures, rising seas and serious storms.

Plants and trees are also feeling the change, but they can’t move out of the way. Researchers at the University of Maryland Center for Environmental Science and University of Vermont have developed a new tool to overcome a major challenge of predicting how organisms may respond to climate change.

“When climate changes, organisms have three choices: migrate, adapt, or go extinct,” said lead author Matt Fitzpatrick of the University of Maryland Center for Environmental Science’s Appalachian Laboratory. “We’re bringing the ability to quantify that adaptation piece that had largely been missing up to this point.”

Organisms are adapted to live in certain environments and not others. However climate change is forcing them to live in climates to which they may not be well adapted. Animals can move around, but things like plants and trees are rooted in the ground and must withstand climate change or die. 

Scientists have combined genetic analyses with new modeling approaches for the first time to help identify how well balsam popular trees are adapted to handle climate change. The scientists sampled the genetic code of 400 trees from 31 locations across northern North America and combined the genetic variations with computer modeling techniques to map how important genes differ within balsam poplar and to locate where trees may have the best chance of survival in a rapidly warming world.

Up until now, scientists have sought to quantify the risk of climate change to different species by mapping where those species occur today based on climate and then predicting where they may occur in the future. For instance, models for North American tree species often predict them to occur further north as climate warms.

“The problem with the approach is you’re assuming all individuals within a species are identical, like assuming all humans will respond identically to an illness,” said Fitzpatrick. “Some will respond differently given different genetic backgrounds. 

It turns out that all members of a species won’t react the same way to climate change. Some poplar trees are already adapted genetically to handle climate changes expected over the next few decades while others are not--just like some people a more likely to survive a disease than others. 

Increasingly local adaptation to climate is being studied at the molecular level by identifying which genes control climate adaptation and how these vary between individuals. This type of modeling of variation in genetic makeup represents an important advance in understanding how climate change may impact biodiversity.

“We’ve developed the techniques to associate genetic variation to climate and to map where individuals may and may not be pre-adapted to climates expected in the future,” said Fitzpatrick. “It’s important to know where these places are. This gives us a way to link climate responses more closely to the biology than we were able to do previously.”

The study, “Ecological genomics meets community-level modeling of biodiversity: mapping the genomic landscape of current and future environmental adaptation,” was published by Matthew Fitzpatrick of the University of Maryland Center for Environmental Science and Steven Keller of the University of Vermont. It appeared in the October 1 issue of Ecology Letters.

Amy Pelsinsky | Eurek Alert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>