Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's tiny engineers

02.09.2014

Coral organisms use minuscule appendages to control their environment, stirring up water eddies to bring nutrients

Conventional wisdom has long held that corals — whose calcium-carbonate skeletons form the foundation of coral reefs — are passive organisms that rely entirely on ocean currents to deliver dissolved substances, such as nutrients and oxygen.

But now scientists at MIT and the Weizmann Institute of Science (WIS) in Israel have found that they are far from passive, engineering their environment to sweep water into turbulent patterns that greatly enhance their ability to exchange nutrients and dissolved gases with their environment.

"These microenvironmental processes are not only important, but also unexpected," says Roman Stocker, an associate professor of civil and environmental engineering at MIT and senior author of a paper describing the results in the Proceedings of the National Academy of Sciences.

When the team set up their experiment with living coral in tanks in the lab, "I was expecting that this would be a smooth microworld, there would be not much action except the external flow," Stocker says. Instead, what the researchers found, by zooming in on the coral surface with powerful microscopes and high-speed video cameras, was the opposite: Within the millimeter closest to the coral surface, "it's very violent," he says.

It's long been known that corals have cilia, small threadlike appendages that can push water along the coral surface. However, these currents were previously assumed to move parallel to the coral surface, in a conveyor-belt fashion. Such smooth motion may help corals remove sediments, but would have little effect on the exchange of dissolved nutrients.

Now Stocker and his colleagues show that the cilia on the coral's surface are arranged in such a way as to produce strong swirls of water that draw nutrients toward the coral, while driving away potentially toxic waste products, such as excess oxygen.

Not just passive

"The general thinking has been that corals are completely dependent upon ambient flow, from tides and turbulence, to enable them to overcome diffusion limitation and facilitate the efficient supply of nutrients and the disposal of dissolved waste products," says Orr Shapiro, a postdoc from WIS and co-first author on the paper, who spent a year in Stocker's lab making these observations.

Under such a scenario, colonies in sheltered parts of a reef or at slack tide would see little water movement and might experience severe nutrient limitation or a buildup of toxic waste, to the point of jeopardizing their survival. "Even the shape of the coral can be problematic" under that passive scenario, says Vicente Fernandez, an MIT postdoc and co-first author of the paper. Coral structures are often "treelike, with a deeply branched structure that blocks a lot of the external flow, so the amount of new water going through to the center is very low."

The team's approach of looking at corals with video microscopy and advanced image analysis changed this paradigm. They showed that corals use their cilia to actively enhance the exchange of dissolved molecules, which allows them to maintain increased rates of photosynthesis and respiration even under near-zero ambient flow.

The researchers tested six different species of reef corals, demonstrating that all share the ability to induce complex turbulent flows around them. "While that doesn't yet prove that all reef corals do the same," Shapiro says, "it appears that most if not all have the cilia that create these flows. The retention of cilia through 400 million years of evolution suggests that reef corals derive a substantial evolutionary advantage" from these flows.

Corals need to stir it up

The reported findings transform the way we perceive the surface of reef corals; the existing view of a stagnant boundary layer has been replaced by one of a dynamic, actively stirred environment. This will be important not only to questions of mass transport, but also to the interactions of marine microorganisms with coral colonies, a subject that attracts much attention due to a global increase in coral disease and reef degradation over the past decades.

Besides illuminating how coral reefs function, which could help better predict their health in the face of climate change, this research could have implications in other fields, Stocker suggests: Cilia are ubiquitous in more complex organisms — such as inside human airways, where they help to sweep away contaminants.

But such processes are difficult to study because cilia are internal. "It's rare that you have a situation in which you see cilia on the outside of an animal," Stocker says — so corals could provide a general model for understanding ciliary processes related to mass transport and disease.

###

In addition to Stocker, Shapiro, and Fernandez, the research team included Assaf Vardi, faculty at WIS; postdoc Melissa Garren; former MIT postdoc Jeffrey Guasto, now an assistant professor at Tufts University; undergraduate François Debaillon-Vesque from MIT and the École Polytechnique in Paris; and Esti Kramarski-Winter from WIS. The work was supported by the Human Frontiers in Science Program, the National Science Foundation, the National Institutes of Health, and the Gordon and Betty Moore Foundation.

Written by David Chandler, MIT News Office

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: MIT Oxygen Photosynthesis Technology WIS colonies corals nutrients processes tiny toxic waste turbulent

More articles from Ecology, The Environment and Conservation:

nachricht Northern bald ibises fit for their journey to Tuscany
21.08.2015 | Veterinärmedizinische Universität Wien

nachricht Boreal forests challenged by global change
21.08.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>