Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Aura Satellite measures pollution from New Mexico, Arizona fires

04.07.2011
NASA's Aura Satellite has provided a view of nitrogen dioxide levels coming from the fires in New Mexico and Arizona. Detecting nitrogen dioxide is important because it reacts with sunlight to create low-level ozone or smog and poor air quality.

The fierce Las Conchas fire threatened the town and National Laboratory in Los Alamos, while smoke from Arizona's immense Wallow Fire and the Donaldson Fire in central New Mexico also created nitrogen dioxides (NO2) detectable by the Ozone Measuring Instrument (OMI) that flies aboard NASA's Aura satellite.


This image from the OMI instrument on NASA's Aura satellite shows nitrogen dioxide levels from June 27 to 29, 2011 in New Mexico and Arizona pertaining to three large fires. The highest levels of NO2 were from the Las Conchas fire (red). The NO2 is measured by the number of molecules in a cubic centimeter. Credit: NASA/James Acker

An image showing nitrogen dioxide levels from June 27 to 29, 2011 was created from OMI data using the NASA Giovanni system by Dr. James Acker at NASA's Goddard Space Flight Center in Greenbelt, Md. The highest levels of NO2 were from the Las Conchas fire. The NO2 is measured by the number of molecules in a cubic centimeter.

Low-level ozone (smog) is hazardous to the health of both plants and animals, and ozone in association with particulate matter causes respiratory problems in humans.

On July 1, Inciweb reported that the Las Conchas fire is currently burning on 93,678 acres and was three percent contained. An infrared flyover at 4 a.m. MDT on July 1 reported 103,842 acres burned. InciWeb is the "Incident Information System" website that reports wildfire conditions throughout the country.

The Donaldson fire is estimated to cover 72, 650 acres and is located to the southeast of the Las Conchas fire. Inciweb reported on July 1 that the fire is burning in the Lincoln National Forest and Mescalero-Apache Tribal lands and is not accessible. The terrain is steep and rocky. It is located about 10 miles northwest of Ruidoso Downs, N.M.

Inciweb reported on July 1 that "smoke from the fire is impacting the communities of Ruidoso, Ruidoso Downs, Capitan, Lincoln, Hondo, Fort Stanton, Picacho, Tinnie, San Patricio, Glencoe and other surrounding areas." In east central Arizona, the Wallow Fire is now 95 percent contained, according to InciWeb. Total acres burned are 538,049, including 15,407 acres in New Mexico.

Emissions from coal-burning power plants located in northwest New Mexico were also visible in the image.

OMI data is archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), and is provided by KNMI, the Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands Meteorological Institute). Dr. P.F. Levelt is the Principal Investigator of OMI, Dr. J. Tamminen is the Finnish Co-PI, and Dr. P.K. Bhartia leads the U.S. OMI science team. Dr. James Gleason (NASA) and Pepijn Veefkind (KNMI) are PIs of the OMI NO2 product.

For more information about the Aura Satellite's OMI instrument, visit:
http://aura.gsfc.nasa.gov/instruments/omi.html
For more information about NO2 and ground level ozone pollution:
http://tes.jpl.nasa.gov/mission/O3SourceSink/

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>