Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mountain meadows dwindling in the Pacific Northwest

The study this story is based on is available in ScholarsArchive@OSU:
Some high mountain meadows in the Pacific Northwest are declining rapidly due to climate change, a study suggests, as reduced snowpacks, longer growing seasons and other factors allow trees to invade these unique ecosystems that once were carpeted with grasses, shrubs and wildflowers.

The process appears to have been going on for decades, but was highlighted in one recent analysis of Jefferson Park, a subalpine meadow complex in the central Oregon Cascade Range, in which tree occupation rose from 8 percent in 1950 to 35 percent in 2007.

The findings of that research, which was funded by the Pacific Northwest Research Station of the USDA Forest Service, were published in the journal Landscape Ecology.

The changes in Jefferson Park are representative of a larger force that is affecting not only this beautiful meadow at the base of Mount Jefferson, scientists say, but many areas of the American West.

“We worry a lot about the loss of old-growth forests, but have overlooked declines in our meadows, which are also areas of conservation concern,” said Harold Zald, a research associate in the College of Forestry at Oregon State University and lead author of this study.

“The first awareness of declining meadows dates back to the 1970s, and we’ve seen meadow reduction at both high and low elevations,” Zald said. “Between climate change, fire suppression and invasive species, these meadows and all of the plant, animal and insect life that depend on them are being threatened.

“Once trees become fully established, they tend to persist, and seed banks of native grass species disappear fairly quickly,” he said. “The meadows form an important part of forest biodiversity, and when they are gone, they may be gone forever.”

The meadow decline takes place over several decades, like the melting of glaciers. This also provides a way to gauge long-term climate change, Zald said, since the forces at work persist through seasonal, annual and longer patterns that are variably more wet, dry, hot or cold than average.

“It takes a long time to melt a glacier or fill in a meadow,” he said. “It’s a useful barometer of climate change over decadal time periods.”

In this study, it appears that snowpack was a bigger factor than temperature in allowing mountain hemlock tree invasion of Jefferson Park, a 333-acre meadow which sits at the northern base of Mount Jefferson, a towering 10,497-foot volcano northwest of Bend, Ore. Seedlings that can be buried by snow many months every year need only a few more weeks or months of growing season to hugely increase their chance of survival.

The study also found surprising variability of tree invasion even within the meadow, based on minor dips, debris flows or bumps in the terrain that caused changes in snowpack and also left some soils wetter or drier in ways that facilitated tree seedling survival.

“The process of tree invasion is usually slow and uneven,” Zald said. “But if you get all the conditions just right, some tree species can invade these meadows quite rapidly.”

There’s some suggestion that alpine meadows may simply move higher up on the mountain in the face of a changing climate, Zald said, but in many cases slopes become too steep, and poor-quality, unstable soils are unable to harbor much plant life.

In other research in recent years, Zald said, he looked at meadows on lower-elevation mountains in the Oregon Coast Range – what are called “grass balds” on the tops of some of the higher peaks, such as Mary’s Peak, the highest point in that range west of Corvallis, Ore. In a study of five Coast Range sites, Zald found that these “bald spots” had declined by an average of 50 percent between 1950 and 2000.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Harold Zald | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Don't forget plankton in climate change models, says study
27.11.2015 | University of Exeter

nachricht Using sphere packing models to explain the structure of forests
26.11.2015 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>