Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mother knows best

10.09.2009
Females control sperm storage to pick the best father

Scientists have found new evidence to explain how female insects can influence the father of their offspring, even after mating with up to ten males. A team from the University of Exeter has found that female crickets are able to control the amount of sperm that they store from each mate to select the best father for their young.

The research team believes the females may be using their abdominal muscles to control the amount of sperm stored from each mate. Their findings are now published in the journal Molecular Ecology.

Female crickets mate with several different males, including their closest relatives. In general, offspring produced with close relatives are more likely to have genetic disorders. Different animals employ a range of behaviours to avoid this, such as not mating other animals from the group they grow up in. Crickets do not avoid mating with relatives, but this research shows that they produce more offspring fathered by males that are unrelated to them.

To conduct their study, the researchers bred field crickets in the laboratory. They used new DNA-based techniques to determine the quantity stored by each the female. They found that the females stored a higher content of sperm from unrelated males. They then tested young crickets to determine their paternity. The results showed that, regardless of the order in which they had mated, an unrelated mate was more likely to become a father. This must have been under female control, because the methods the team used meant that males could not influence the amount of sperm they passed to the female.

Though the study focused on field crickets, the findings are likely to be relevant in other insect species and possibly other sections of the animal kingdom. For example, chickens are known to store more sperm from dominant males.

Lead author Dr Amanda Bretman of the University of Exeter said: "Our study shows that even after mating, female insects control who fathers their offspring. We're only really just beginning to understand the reasons for the different mating strategies in the insect world and that is thanks to new techniques."

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>