Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How will migratory amphihaline fish be distributed in Europe in 2100?

Overfishing, water pollution, excessive riverside development, etc. have contributed to the regression of amphihaline migratory fish populations in Europe.

Today, most species are in danger. Restoration programs at different spatial and temporal scales have been initiated with, notably, support to populations and rehabilitation of habitats.

However, in the current context of climate change, the distribution of species and the characteristics of their migration need to change. In Bordeaux, Cemagref researchers have been using biogeographic models to predict the distribution of European amphihaline migratory species on the 2100 horizon.

The scientific community is beginning to apprehend the impacts of global warming on the distribution of forest essences and the progression of nesting birds in Europe. To date, few studies have been conducted on the effects of the rise in river and ocean temperatures on the distribution and the future of migratory amphihaline fish. Yet most European species are now in danger. As indicated by the label “amphihaline migrators,” these fish migrate great distances to complete their life cycle between ocean and river. A simulation of the future geographic distribution of migratory fish integrating climate change has just been completed for a doctoral dissertation at the Bordeaux Cemagref. On the 2100 horizon, the results predict consequential losses in climatically favorable watersheds, which raises the question of the future of the majority of European species.

- A historical model of species distribution...

The researchers began by inventorying migratory amphihaline fish species throughout Europe, the Middle East, and North Africa. This large geographical scale covered the near totality of the geographical area occupied by each of the 28 European species included in the census. How will temperature limit the distribution zone of these species? To answer this question, 200 watersheds were studied to describe the distribution of each species in terms of presence-absence and abundance. The study established a distribution model for each species at a time when humans exerted little pressure on the milieux. The 1900s were chosen as the reference period. More than 400 bibliographical references were analyzed and lists were made by partner laboratories of the European Diadfish1 network. In addition to air temperature, four other factors known to influence freshwater fish distribution were studied: longitude at the mouth of the watershed, the surface area of the watershed, altitude at the river’s source, and precipitations.

- What future is in store for amphihaline migratory fish in 2100?

The next step applied these distribution models to a context of climate change, using the four reference climate scenarios developed by the Intergovernmental Expert Group on Climate Change (Groupement d’Experts Intergouvernementaux sur l’Evolution du Climat, GIEC, 2000). The study’s term was set at 2100 so as to have sufficient distance to measure significant evolution in the fish populations. In addition, this date corresponds to the order of magnitude for most restoration plans successfully carried out for migratory amphihaline fish. Based on a temperature evaluation between 1 and 7°C, species’ responses can be classified into three categories: one shrinking their distribution area, one extending their distribution area, and one showing little or no change in distribution. This study shows that for most species the situation will deteriorate. For example, smelt and arctic char should lose approximately 90% of the favorable watersheds for zero or reduced gains. Only two species, the thick-lipped grey mullet and the twaite shad, will be able to expand toward the north, beyond their initial distribution area. Finally, as predicted, the southern watersheds risk losing most of their species. Could this be an opportunity for more exotic migratory amphihaline fish? Researchers are very reserved on the subject, even pessimistic, because the migratory amphihaline species swim along the coast of West Africa since they have no permanent rivers in which to live.

It is therefore urgent to restore milieux and populations. The predictive models established within these studies are relevant tools to be used to set up conservation programs over the long term at different scales of action.

Marie Signoret | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>