Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How will migratory amphihaline fish be distributed in Europe in 2100?

06.11.2008
Overfishing, water pollution, excessive riverside development, etc. have contributed to the regression of amphihaline migratory fish populations in Europe.

Today, most species are in danger. Restoration programs at different spatial and temporal scales have been initiated with, notably, support to populations and rehabilitation of habitats.

However, in the current context of climate change, the distribution of species and the characteristics of their migration need to change. In Bordeaux, Cemagref researchers have been using biogeographic models to predict the distribution of European amphihaline migratory species on the 2100 horizon.

The scientific community is beginning to apprehend the impacts of global warming on the distribution of forest essences and the progression of nesting birds in Europe. To date, few studies have been conducted on the effects of the rise in river and ocean temperatures on the distribution and the future of migratory amphihaline fish. Yet most European species are now in danger. As indicated by the label “amphihaline migrators,” these fish migrate great distances to complete their life cycle between ocean and river. A simulation of the future geographic distribution of migratory fish integrating climate change has just been completed for a doctoral dissertation at the Bordeaux Cemagref. On the 2100 horizon, the results predict consequential losses in climatically favorable watersheds, which raises the question of the future of the majority of European species.

- A historical model of species distribution...

The researchers began by inventorying migratory amphihaline fish species throughout Europe, the Middle East, and North Africa. This large geographical scale covered the near totality of the geographical area occupied by each of the 28 European species included in the census. How will temperature limit the distribution zone of these species? To answer this question, 200 watersheds were studied to describe the distribution of each species in terms of presence-absence and abundance. The study established a distribution model for each species at a time when humans exerted little pressure on the milieux. The 1900s were chosen as the reference period. More than 400 bibliographical references were analyzed and lists were made by partner laboratories of the European Diadfish1 network. In addition to air temperature, four other factors known to influence freshwater fish distribution were studied: longitude at the mouth of the watershed, the surface area of the watershed, altitude at the river’s source, and precipitations.

- What future is in store for amphihaline migratory fish in 2100?

The next step applied these distribution models to a context of climate change, using the four reference climate scenarios developed by the Intergovernmental Expert Group on Climate Change (Groupement d’Experts Intergouvernementaux sur l’Evolution du Climat, GIEC, 2000). The study’s term was set at 2100 so as to have sufficient distance to measure significant evolution in the fish populations. In addition, this date corresponds to the order of magnitude for most restoration plans successfully carried out for migratory amphihaline fish. Based on a temperature evaluation between 1 and 7°C, species’ responses can be classified into three categories: one shrinking their distribution area, one extending their distribution area, and one showing little or no change in distribution. This study shows that for most species the situation will deteriorate. For example, smelt and arctic char should lose approximately 90% of the favorable watersheds for zero or reduced gains. Only two species, the thick-lipped grey mullet and the twaite shad, will be able to expand toward the north, beyond their initial distribution area. Finally, as predicted, the southern watersheds risk losing most of their species. Could this be an opportunity for more exotic migratory amphihaline fish? Researchers are very reserved on the subject, even pessimistic, because the migratory amphihaline species swim along the coast of West Africa since they have no permanent rivers in which to live.

It is therefore urgent to restore milieux and populations. The predictive models established within these studies are relevant tools to be used to set up conservation programs over the long term at different scales of action.

Marie Signoret | alfa
Further information:
http://www.cemagref.fr
http://www.cemagref.fr/Informations/Presse/InfMediaEV/infomedia86EV/im86_rech3_EV.htm

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>