Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercurial tuna: Study explores sources of mercury to ocean fish

03.03.2010
With concern over mercury contamination of tuna on the rise and growing information about the health effects of eating contaminated fish, scientists would like to know exactly where the pollutant is coming from and how it's getting into open-ocean fish species.

A new study published in the journal Environmental Science & Technology uses chemical signatures of nitrogen, carbon and mercury to get at the question. The work also paves the way to new means of tracking sources of mercury poisoning in people.

The study, by researchers at the University of Michigan, Harvard School of Public Health, the Louisiana Universities Marine Consortium and the National Institute of Nutrition and Seafood Research in Norway, appears in the journal's March 1, 2010 issue.

Mercury is a naturally occurring element, but some 2,000 tons of it enter the global environment each year from human-generated sources such as coal-burning power plants, incinerators and chlorine-producing plants. Deposited onto land or into water, mercury is picked up by microorganisms, which convert some of it to methylmercury, a highly toxic form that builds up in fish and the animals—and people—that eat them.

The primary way people in the United States are exposed to methylmercury is by eating fish and shellfish. Health effects include damage to the central nervous system, heart and immune system, and the developing brains of young and unborn children are especially vulnerable.

In the current study, the researchers wanted to know if tuna and other open-ocean fish pick up methylmercury by eating contaminated fish that live closer to shore or by some other means. They studied 11 species of fish, including red snapper, speckled trout, Spanish mackerel and two species of tuna. Seven of the species studied live in the shallow, coastal waters of the Gulf of Mexico; the two tuna species live far out in the ocean and are highly migratory; the remaining two species spend parts of their lives in both habitats.

It's no mystery how the coastal fish acquire methylmercury, said Joel Blum, who is the John D. MacArthur Professor of Geological Sciences at U-M. "We know that there's a lot of mercury pollution in the coastal zone. A large amount of mercury comes down the Mississippi River, and there's also air pollution and deposition of mercury from the highly industrialized coastal Gulf region." In this environment, methylation occurs in the low-oxygen conditions of the lower water column and sediments, and the methylmercury wends its way up the food web, becoming more concentrated at each step along the way.

"It's much less clear how methylmercury gets into open-ocean fish species, some of which don't come anywhere close to shore but can still have very high levels," said the study's lead author, David Senn, formerly of the Harvard School of Public Health, and now a senior researcher at the Swiss Federal Institute of Aquatic Science and Technology. Scientists have proposed three possibilities.

One is that open-ocean fish visit coastal areas to feed, picking up methylmercury from the coastal food web. Another possibility is that small organisms that acquire methylmercury in coastal regions are washed out to sea, where they enter the open-ocean food web. In the third scenario, mercury is directly deposited into the open ocean, where it undergoes methylation.

By looking at three chemical signatures in the fish—nitrogen isotopes, carbon isotopes and mercury isotopes— Senn, Blum and colleagues learned that coastal fish and open-ocean fish are feeding from two separate food webs.

"That rules out the first explanation, that these tuna were getting their methylmercury by feeding off coastal fish," Senn said.

"We think it's unlikely that the mercury is being methylated in coastal sediments and then washed out to the open ocean, so the most likely alternative is that there is deposition and methylation of mercury in the open ocean," Blum said. The finding runs counter to the long-held view that the open ocean is too oxygen-rich to support methylation, but it is consistent with recent studies suggesting more methylation may be occurring in that environment than was previously thought.

"It turns out there are probably low-oxygen microenvironments on tiny particles of organic matter, where methylation may be able to occur," Blum said.

One of the biggest differences the researchers found between coastal and open-ocean fish was in their mercury "fingerprint." The fingerprint is the result of a natural phenomenon called isotopic fractionation, in which different isotopes of mercury react to form new compounds at slightly different rates. In one type of isotopic fractionation, mass-dependent fractionation (MDF), the differing rates depend on the masses of the isotopes. In mass-independent fractionation (MIF), the behavior of the isotopes depends not on their absolute masses but on whether their masses are odd or even.

The researchers found that open-ocean fish have a much stronger MIF fingerprint than do coastal fish, a discovery that opens the door to new ways of analyzing human exposure to mercury.

"We can do an isotopic analysis of the mercury in your hair, and by looking at this mass-independent signal, tell you how much of the mercury is coming from inorganic sources, such as exposure to mercury gas or amalgams in your dental fillings, versus how much is coming from the fish that you eat," Blum said. "We think this could become a widespread technique for identifying sources of mercury contamination."

Senn and Blum's coauthors are Edward Chesney of the Louisiana Universities Marine Consortium; Michael Bank and James Shine of Harvard School of Public Health; and Amund Maage of Norway's National Institute of Nutrition and Seafood Research.

The research was funded by a National Oceanic and Atmospheric Administration grant to Harvard School of Public Health and by the University of Michigan.

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>