Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math detects contamination in water distribution networks

29.11.2012
None of us want to experience events like the Camelford water pollution incident in Cornwall, England, in the late eighties, or more recently, the Crestwood, Illinois, water contamination episode in 2009 where accidental pollution of drinking water led to heart-wrenching consequences to consumers, including brain damage, high cancer risk, and even death. In the case of such catastrophes, it is important to have a method to identify and curtail contaminations immediately to minimize impact on the public.
A paper published earlier this month in the SIAM Journal on Applied Mathematics considers the identification of contaminants in a water distribution network as an optimal control problem within a networked system.

“Water supply networks are an essential part of our infrastructure. Sometimes the water in such a network can be contaminated, often by human error, causing the use of polluted water for drinking water production. In the case of such a situation, it is important to have a method to identify the location of the pollution source,” says the paper’s author, Martin Gugat, explaining the significance of his work.
The paper considers a water distribution network with a finite number of nodes where contamination can occur in the pipes.

“The contamination spreads dynamically through the network with time. So, in order to model the system, a model of the evolution in time is necessary,” explains Gugat. “In our approach, we use a partial differential equation (PDE) to model how pollution spreads in the network.”

By using a PDE model for transport of contaminants, the problem of identifying the source becomes an optimal control problem. The solution is calculated using equidistant time grids, which allows one to determine the values of contamination at all potential sources on the time grid. Available data on pollution and network flow is incorporated into the model.

Employing certain assumptions for travel times through the pipes, the author uses a least-squares method to solve the problem. The least squares method provides approximate solutions to optimization problems that are relatively efficient to compute using the tools of numerical linear algebra.

This provides a fast method to identify possible contamination sources, explains Gugat. “For a really accurate model, however, a full system of three-dimensional PDEs is necessary. But with three-dimensional PDEs, simulation is only possible for small networks,” he says. “This illustrates that to solve real life problems on real networks, there is a trade-off between the accuracy of the model and its utility.”

While the method is tested numerically in the paper, additional work would involve testing the system with an existing water network to demonstrate its workability in practice.

Another future direction is toward elimination of the contaminant. “The second step after the identification of the contamination source is a strategy to flush the polluted water out of the network as fast as possible with acceptable operational cost. The development of an optimal strategy for such a rehabilitation of the water supply is an interesting question for future research,” says Gugat.

“For a more detailed model of the process, more complex nonlinear PDEs could be used,” he continues. “The cost of the numerical treatment of complex PDEs for large networks is prohibitive. Applied mathematics has to offer models that can be used according to the problem requirements to solve problems with network graphs of a realistic size.”

Source Article:
Contamination Source Determination in Water Distribution Networks
Martin Gugat, SIAM Journal on Applied Mathematics, 72(6), 1772–1791 (Online publish date: 5 November 2012)
The source article is available for free access at the link above until February 28, 2013.

About the Author:
Martin Gugat is a researcher at the University of Erlangen-Nuremberg, Lehrstuhl f¨ur angewandte Mathematik 2, in Erlangen, Germany. This work was supported by DFG research cluster 1253: Optimization with Partial Differential Equations, grant GU 376/7-1.

About SIAM
The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters. Further information is available at www.siam.org.

Karthika Muthukumaraswamy | EurekAlert!
Further information:
http://www.siam.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>