Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making dams safer for fish around the world

15.04.2014

Fish-friendly hydropower is the goal of international team

Think of the pressure change you feel when an elevator zips you up multiple floors in a tall building. Imagine how you'd feel if that elevator carried you all the way up to the top of Mt. Everest — in the blink of an eye.


Colorized photo of the swim bladder of a smallmouth bass.

That's similar to what many fish experience when they travel through the turbulent waters near a dam. For some, the change in pressure is simply too big, too fast, and they die or are seriously injured.

In an article in the March issue of the journal Fisheries, ecologists from the Department of Energy's Pacific Northwest National Laboratory and colleagues from around the world explore ways to protect fish from the phenomenon, known as barotrauma.

Among the findings: Modifying turbines to minimize dramatic shifts in pressure offers an important way to keep fish safe when passing through dams. The research is part of a promising body of work that aims to reduce such injuries by improving turbine designs in dams around the world.

PNNL researchers are working with officials and scientists from Laos, Brazil, and Australia — areas where hydropower is booming — to apply lessons learned from experience in the Pacific Northwest, where salmon is king and water provides about two-thirds of the region's power. There, billions of dollars have been spent since 1950 to save salmon endangered largely by the environmental impact of hydropower.

"Hydropower is a tremendous resource, often available in areas far from other sources of power, and critical to the future of many people around the globe," said Richard Brown, a senior research scientist at PNNL and the lead author of the Fisheries paper.

"We want to help minimize the risk to fish while making it possible to bring power to schools, hospitals, and areas that desperately need it," added Brown.

Harnessing the power of water flowing downhill to spin turbines is the most convenient energy source in many parts of the world, and it's a clean, renewable source of energy to boot.

In Brazil, several dozen dams are planned along the Amazon, Madeira and Xingu rivers — an area that teems with more than 5,000 species of fish, and where some of the largest hydropower projects in the world are being built. In southeastern Australia, hydropower devices are planned in the area drained by the Murray-Darling river system. And in Southeast Asia, hundreds of dams and smaller hydro structures are planned in the Lower Mekong River Basin.

The authors say the findings from a collaboration that spans four continents improve our understanding of hydropower and will benefit fish around the globe. New results about species in the Mekong or Amazon regions, for instance, can inform fish-friendly practices in those regions of the United States where barotrauma has not been extensively studied.

To 'Everest' and back in an instant

Dams vary considerably in the challenges they pose to migrating fish, and the challenges are magnified when a fish must pass through more than one dam or hydro structure. At some, mortality is quite high, while at others, such as along the Columbia River, most fish are able to pass over or through a single dam safely, thanks to extensive measures to keep fish safe. Some fish spill harmlessly over the top, while others pass through pipes or other structures designed to route fish around the dam or steer them clear of the energy-producing turbines.

Still, at most dams, the tremendous turbulence of the water can hurt or disorient fish, and the blades of a turbine can strike them. The new study focuses on a third problem, barotrauma — damage that happens at some dams when a fish experiences a large change in pressure.

Depending on its specific path, a fish traveling through a dam can experience an enormous drop in pressure, similar to the change from sea level to the top of Mt. Everest, in an instant. Just as fast, as the waters swirl, the fish suddenly finds itself back at its normal pressure.

Those sudden changes can have a catastrophic effect on fish, most of which are equipped with an organ known as a swim bladder — like a balloon — to maintain buoyancy at a desired depth. When the fish goes deeper and pressures are greater, the swim bladder shrinks; when the fish rises and pressure is reduced, the organ increases in size.

For some fish, the pressure shift means the swim bladder instantly expands four-fold or eight-fold, like an air bag that inflates suddenly. This rapid expansion can result in internal injuries or even death.

Factors at play include the specific path of a fish, the amount of water going through a turbine, the design of the turbine, the depth of water where the fish usually lives, and the physiology of the fish itself.

"To customize a power plant that is the safest for the fish, you must understand the species of fish in that particular river, their physiology, and the depth at which they normally reside, as well as the tremendous forces that the fish can be subjected to," said Brown.

PNNL scientists have found that trying to keep minimum pressure higher in all areas near the turbine is key for preventing barotrauma. That reduces the amount of pressure change a fish is exposed to and is a crucial component for any turbine that is truly "fish friendly." Preventing those extremely low pressures also protects a turbine from damage, reducing shutdowns and costly repairs.

Lower Mekong River Basin

Brown and PNNL colleague Zhiqun (Daniel) Deng have made several trips to work with scientists in Southeast Asia, where dozens of dams are planned along the Mekong River and its tributaries. The Mekong starts out high in Tibet and travels more than 2,700 miles, touching China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. The team estimates more than 1,200 species of fish make their home in the Mekong, including the giant Mekong catfish and the giant freshwater stingray, as well as the endangered Irrawaddy dolphin.

The scientists estimate that the region's fish account for almost half of the protein in the diet of the people of Laos and nearly 80 percent for the people of Cambodia. Four out of five households in the region rely heavily on fish for food, jobs, or both.

"Many people in Southeast Asia rely on fish both for food and their livelihood; it's a huge issue, crucial in the lives of many people. Hydropower is also a critical resource in the region," said Deng, a PNNL chief scientist and an author of the paper.

"Can we reduce the impact of dams on fish, to create a sustainable hydropower system and ensure the food supply and livelihoods of people in these regions? Can others learn from our experiences in the Pacific Northwest? This is why we do research in the laboratory — to make an impact in the real world, on people's lives," added Deng.

The same team of scientists just published a paper in the Journal of Renewable and Sustainable Energy, focusing broadly on creating sustainable hydro in the Lower Mekong River Basin. The paper discusses the potential for hydropower sources in the region (30 gigawatts), migratory patterns of its fish, the importance of fish-friendly technology, and further studies needed to understand hydro's impact on fish of the Mekong.

Authors of the Fisheries paper include scientists from PNNL, the National University of Laos, and the Living Aquatic Resources Research Center in Laos, the Federal University of São João Del-Rei in Brazil, the University of British Columbia; and from Australia, the Port Stephens Fisheries Institute in New South Wales, the Narrandera Fisheries Centre in New South Wales, and Fishway Consulting Services. PNNL's work in the area has been funded by the U.S. Army Corps of Engineers, DOE's Office of Energy Efficiency and Renewable Energy, and AusAid, the Australian Agency for International Development.

Reference: Richard S. Brown, Alison H. Colotelo, Brett D. Pflugrath, Craig A. Boys, Lee J. Baumgartner, Z. Daniel Deng, Luiz G.M. Silva, Colin J. Brauner, Martin Mallen-Cooper, Oudom Phonekhampeng, Garry Thorncraft, Douangkham Singhanouvong, Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources, Fisheries, March 2014, DOI:10.1080/03632415.2014.883570.

Tom Rickey | Eurek Alert!
Further information:
http://www.pnnl.gov/news/release.aspx?id=1046

Further reports about: Wildlife Research energy environment hydropower renewable energy structures

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>