Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hog waste producing electricity and carbon offsets

09.09.2011
A pilot waste-to-energy system constructed by Duke University and Duke Energy this week garnered the endorsement of Google Inc., which invests in high-quality carbon offsets from across the nation to fulfill its own carbon neutrality goals. The system, on a hog finishing facility 25 miles west of Winston-Salem, converts hog waste into electricity and creates carbon offset credits.

By capturing greenhouse gases from hog waste and burning them to run a turbine, the system produces enough electricity to power 35 homes for a year. It is expected to be able to prevent the release of greenhouse gases equivalent to nearly 5,000 metric tons of CO2 per year, which is like taking 900 cars off the road.

The $1.2 million prototype system was built at Loyd Ray Farms, a 9,000-head hog finishing operation northwest of Yadkinville, N.C. It is intended to serve as a model for other hog farms seeking to manage waste, reduce greenhouse gas emissions, and develop on-farm renewable power. Though this is an established farm, the system meets North Carolina's environmental standards for new and expanded hog farms.

It was built mostly with off-the-shelf technology and is an "open source" design that others may freely adopt. The system includes a lined and covered anaerobic digester and a lined aeration basin. Methane gas is collected under a thick plastic dome over the digester. Gas which isn't burned in the turbine is burned in a flare to prevent its release.

Open waste lagoons currently in use on most North Carolina hog finishing farms are prolific producers of methane gas, which is 21 times more potent than carbon dioxide, pound-for-pound, as a greenhouse gas.

"It is exciting to see the system up and running, and even more exciting that it's getting recognized by Google," said Tatjana Vujic, (TOT-ee-ana VOICH) director of the university's Duke Carbon Offsets Initiative. "Completing this full-scale system and getting it operational is a great testament to its design and the foresight of all of its various supporters."

Duke University and Duke Energy have been developing the pilot project for nearly three years, with additional grant funding from the U.S. Department of Agriculture and the North Carolina Department of Environment and Natural Resources Lagoon Conversion Program. Duke Energy and the university will share operational and maintenance costs for the first 10 years of operation. Google will assume a share of the university's portion of the costs in return for a portion of the carbon offsets for a 5-year term.

The project is expected to yield many benefits beyond renewable energy production and greenhouse gas reductions, including improved water and air quality; reduced odors, pathogens and nutrients; and increased farm productivity.

"It is rewarding to see three years of hard work come into operation and exciting to have Google as a new partner in this project," said Owen Smith, managing director of Duke Energy's regulated renewables business. "As North Carolina continues to explore new ways to generate renewable energy from hog waste, this site serves as a showcase for what others can do to capture the energy from hog waste and turn it into usable electricity for customers."

Capturing the methane creates carbon offset credits for Duke University and Google and using it to generate electricity creates renewable energy credits for Duke Energy. Loyd Ray Farms will use surplus electricity on-site.

Duke University engineering professor Marc Deshusses and his students are also studying the system's performance. "Now that the system is on the ground, we have an opportunity to evaluate and quantify all of its benefits, and to work on making it more efficient and economical to build and operate," Deshusses said. "Innovative systems that can reduce greenhouse gases plus take waste and turn it into energy are the kinds of things Duke University is anxious to evaluate and promote."

The utility and the university share the Duke name for a reason: Both were founded through the foresight and investment of James Buchanan Duke in the early 20th century. Duke University's carbon offsets initiative was created with support from The Duke Endowment, a non-profit foundation based in Charlotte, N.C.

LEARN MORE:

Duke Carbon Offsets Initiative - sustainability.duke.edu/carbon_offsets/index.php

Google's Green Blog - http://bit.ly/ozVjeh

YouTube Video about the project - youtu.be/znw7t9aqrf4

Tatjana Vujic | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>