Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does history repeat? Using the past to improve ecological forecasting

21.02.2012
To better predict the future, Jack Williams is looking to the past.

"Environmental change is altering the composition and function of ecological communities," says the Bryson Professor of Climate, People, and the Environment in the University of Wisconsin–Madison geography department. Williams also directs the Center for Climatic Research in the Nelson Institute for Environmental Studies.

On Monday, Feb. 20, Williams is speaking at the annual meeting of the American Association of the Advancement of Science in Vancouver, British Columbia. In a talk titled, "Novel Climates, No-Analog Communities, and Truncated Niches," he discusses the challenges involved in making informed predictions about how ecological communities will respond to changing climate.

Right now global climates are changing rapidly and it is likely that this century will see the emergence of what he calls "no-analog" climates, combinations of climate factors – such as maximum and minimum temperature, amount and timing of precipitation, and seasonal variation – that do not exist anywhere on the globe today.

"There are areas of the world that are expected to develop novel climates this century," Williams says. "How do we predict species' responses to climates that are outside the modern range?"

To look at how ecological changes have been driven by past climate change, he draws on a recent historical period of abrupt global change – the late Quaternary Period, particularly the past 20,000 years, when the world warmed from the last ice age to the current interglacial period.

With geohistorical and paleoecological data – derived largely from fossil pollen – he studies the responses of species and communities to climates that no longer exist today.

"We are using this as a model system for looking at the biological responses to climate change, in particular this phenomenon of no-analog climates," he explains.

The biological record reveals that species were highly sensitive to past climate changes, responding in multiple ways including migration, adaptation, changes in population size, and, in some cases, extinction.

But species distribution models, which are widely used to forecast ecological responses to future climate change, match imperfectly to the historical data, presenting a challenge for predicting how today's species will respond to current and future climate change. Even more difficult is scaling up from individual species to understanding the shifting composition of ecological communities.

Williams' historical perspective has revealed that the only sure thing is change. "The key message from paleoecological data is that novel climates in the past are linked to the emergence of novel communities," he says. "We should expect the unexpected. At the same time, we can use this information to not just raise questions but to improve ecological modeling tools."

One current avenue of research is combining modern and paleobiological data to look at individual species under a range of climate conditions.

"Using only modern data may lead us to misestimate the ability of species to adapt to accommodate to climates different from today," Williams explains. "By combining data from multiple time periods, we can develop a fuller understanding of the full range of environments that a species can occupy – which may be far greater than what is observed at any one moment in time."

Improved species distribution models will still need to be combined with an understanding of barriers to adaptation, such as habitat continuity, geographic proximity, mobility, and current land use, all of which affect a species' ability to reach its new ideal range. But they represent an important step forward.

"By combining geohistorical and recent data, this is one way to improve our forecasting ability and, hopefully, our decision-making when it comes to setting conservation priorities and allocating resources," Williams says.

-- Jill Sakai, jasakai@wisc.edu, (608) 262-9772

American Association for the Advancement of Science Annual Meeting
Presentation: "Novel Climates, No-Analog Communities, and Truncated Niches"
Speaker: John W. (Jack) Williams, University of Wisconsin–Madison
Session: The Future of Ecological Communities Under Climate Change: No Analog?"
Time: Monday, February 20, 2012, 9:45 a.m.
Place: Room 116-117 (VCC West Building)

Jack Williams | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>