Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does history repeat? Using the past to improve ecological forecasting

21.02.2012
To better predict the future, Jack Williams is looking to the past.

"Environmental change is altering the composition and function of ecological communities," says the Bryson Professor of Climate, People, and the Environment in the University of Wisconsin–Madison geography department. Williams also directs the Center for Climatic Research in the Nelson Institute for Environmental Studies.

On Monday, Feb. 20, Williams is speaking at the annual meeting of the American Association of the Advancement of Science in Vancouver, British Columbia. In a talk titled, "Novel Climates, No-Analog Communities, and Truncated Niches," he discusses the challenges involved in making informed predictions about how ecological communities will respond to changing climate.

Right now global climates are changing rapidly and it is likely that this century will see the emergence of what he calls "no-analog" climates, combinations of climate factors – such as maximum and minimum temperature, amount and timing of precipitation, and seasonal variation – that do not exist anywhere on the globe today.

"There are areas of the world that are expected to develop novel climates this century," Williams says. "How do we predict species' responses to climates that are outside the modern range?"

To look at how ecological changes have been driven by past climate change, he draws on a recent historical period of abrupt global change – the late Quaternary Period, particularly the past 20,000 years, when the world warmed from the last ice age to the current interglacial period.

With geohistorical and paleoecological data – derived largely from fossil pollen – he studies the responses of species and communities to climates that no longer exist today.

"We are using this as a model system for looking at the biological responses to climate change, in particular this phenomenon of no-analog climates," he explains.

The biological record reveals that species were highly sensitive to past climate changes, responding in multiple ways including migration, adaptation, changes in population size, and, in some cases, extinction.

But species distribution models, which are widely used to forecast ecological responses to future climate change, match imperfectly to the historical data, presenting a challenge for predicting how today's species will respond to current and future climate change. Even more difficult is scaling up from individual species to understanding the shifting composition of ecological communities.

Williams' historical perspective has revealed that the only sure thing is change. "The key message from paleoecological data is that novel climates in the past are linked to the emergence of novel communities," he says. "We should expect the unexpected. At the same time, we can use this information to not just raise questions but to improve ecological modeling tools."

One current avenue of research is combining modern and paleobiological data to look at individual species under a range of climate conditions.

"Using only modern data may lead us to misestimate the ability of species to adapt to accommodate to climates different from today," Williams explains. "By combining data from multiple time periods, we can develop a fuller understanding of the full range of environments that a species can occupy – which may be far greater than what is observed at any one moment in time."

Improved species distribution models will still need to be combined with an understanding of barriers to adaptation, such as habitat continuity, geographic proximity, mobility, and current land use, all of which affect a species' ability to reach its new ideal range. But they represent an important step forward.

"By combining geohistorical and recent data, this is one way to improve our forecasting ability and, hopefully, our decision-making when it comes to setting conservation priorities and allocating resources," Williams says.

-- Jill Sakai, jasakai@wisc.edu, (608) 262-9772

American Association for the Advancement of Science Annual Meeting
Presentation: "Novel Climates, No-Analog Communities, and Truncated Niches"
Speaker: John W. (Jack) Williams, University of Wisconsin–Madison
Session: The Future of Ecological Communities Under Climate Change: No Analog?"
Time: Monday, February 20, 2012, 9:45 a.m.
Place: Room 116-117 (VCC West Building)

Jack Williams | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>