Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gases unbalanced

25.03.2015

How human intervention changes wetlands

The conversion of arctic and boreal wetlands into agricultural land would result in an additional cumulative radiative forcing of about 0,1 mJ per square meter for the next 100 years. The conversion of temperate wetlands into agricultural land would even result in a cumulative radiative forcing of 0,15 mJ per square meter. Converting forested wetlands into managed forests also contributes to increased warming, albeit much less than the conversion of non-forested wetlands.


Automatic flux measurement chambers and an eddy covariance system to determine turbulent exchange fluxes of heat, water vapor, CO2, and CH4 between a re-wetted peatland and the atmosphere at Zarnekow, NE Germany (photo: Daniela Franz, GFZ)

Natural wetlands usually emit methane and sequester carbon dioxide. Anthropogenic interventions, in particular the conversion of wetlands for agriculture, result in a significant increase in CO2 emissions, which overcompensate potential decreases in methane emission.

A large international research team now calculated that the conversion of arctic and boreal wetlands into agricultural land would result in an additional cumulative radiative forcing of about 0,1 mJ per square meter for the next 100 years. The conversion of temperate wetlands into agricultural land would even result in a cumulative radiative forcing of 0,15 mJ per square meter. Converting forested wetlands into managed forests also contributes to increased warming, albeit much less than the conversion of non-forested wetlands.

Wetlands are unique ecosystems, which - under natural conditions - are the single largest natural source of the greenhouse gas methane (CH4) but at the same time an important sink for the greenhouse gas carbon dioxide (CO2). The climate footprint of these ecosystems depends on the balance of these two important greenhouse gases. Despite methane being 28 times more potent as a greenhouse gas than carbon dioxide (in a 100 year time span), the conversion of natural wetlands into agricultural or forested ecosystems and its associated decrease in methane emissions still leads to an overall warming effect.

„The human impact on wetlands, such as drainage, results in a shift of the climate footprint of that wetland” says Torsten Sachs at the GFZ German Research Centre for Geosciences, co-author of the study. „The overall balance of these two differently active greenhouse gases and thus the climate footprint of a wetland over different time spans depend on the relative sign and magnitude of these ecosystem-atmosphere fluxes."

The global impact is still rather uncertain due to large temporal and spatial variability and a lack of data on the complex interactions between environmental drivers such as temperatures of land, water, and sediment, water levels, vegetation, nutrient availability, among others, and the additional anthropogenic impacts such as land use change.

To calculate the net ecosystem carbon balance of wetland ecosystems, the more than 40 member research team synthesized data from almost 30 differently affected arctic, boreal, and temperate study sites across the globe. Simultaneous measurements of the ecosystem-atmosphere CO2 and CH4 fluxes in continental North America, Greenland, Europe, and Russia were used for analyses and modeling.

For sites with a full annual dataset of CO2 and CH4 fluxes, natural and converted sites were paired in all possible combinations within similar ecosystem types. „To determine the climate impact of the conversion, we used the difference of the net ecosystem carbon balance between the site pairs as series of consecutive annual mass pulses and integrated their effect on tropospheric greenhouse gas concentrations” explains GFZ researcher Sachs. The different radiative efficiencies and atmospheric residence times of the greenhouse gases were accounted for when the radiative forcing was calculated for the period from 2000 – 2100.

Ana Maria Roxana Petrescu et. al.: “Uncertain climate footprint of wetlands under human pressure” Proceedings of the National Academy of Science, PNAS Early Edition, 24.03. 2015,

http://www.pnas.org/cgi/doi/10.1073/pnas.1416267112

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>