Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gases unbalanced

25.03.2015

How human intervention changes wetlands

The conversion of arctic and boreal wetlands into agricultural land would result in an additional cumulative radiative forcing of about 0,1 mJ per square meter for the next 100 years. The conversion of temperate wetlands into agricultural land would even result in a cumulative radiative forcing of 0,15 mJ per square meter. Converting forested wetlands into managed forests also contributes to increased warming, albeit much less than the conversion of non-forested wetlands.


Automatic flux measurement chambers and an eddy covariance system to determine turbulent exchange fluxes of heat, water vapor, CO2, and CH4 between a re-wetted peatland and the atmosphere at Zarnekow, NE Germany (photo: Daniela Franz, GFZ)

Natural wetlands usually emit methane and sequester carbon dioxide. Anthropogenic interventions, in particular the conversion of wetlands for agriculture, result in a significant increase in CO2 emissions, which overcompensate potential decreases in methane emission.

A large international research team now calculated that the conversion of arctic and boreal wetlands into agricultural land would result in an additional cumulative radiative forcing of about 0,1 mJ per square meter for the next 100 years. The conversion of temperate wetlands into agricultural land would even result in a cumulative radiative forcing of 0,15 mJ per square meter. Converting forested wetlands into managed forests also contributes to increased warming, albeit much less than the conversion of non-forested wetlands.

Wetlands are unique ecosystems, which - under natural conditions - are the single largest natural source of the greenhouse gas methane (CH4) but at the same time an important sink for the greenhouse gas carbon dioxide (CO2). The climate footprint of these ecosystems depends on the balance of these two important greenhouse gases. Despite methane being 28 times more potent as a greenhouse gas than carbon dioxide (in a 100 year time span), the conversion of natural wetlands into agricultural or forested ecosystems and its associated decrease in methane emissions still leads to an overall warming effect.

„The human impact on wetlands, such as drainage, results in a shift of the climate footprint of that wetland” says Torsten Sachs at the GFZ German Research Centre for Geosciences, co-author of the study. „The overall balance of these two differently active greenhouse gases and thus the climate footprint of a wetland over different time spans depend on the relative sign and magnitude of these ecosystem-atmosphere fluxes."

The global impact is still rather uncertain due to large temporal and spatial variability and a lack of data on the complex interactions between environmental drivers such as temperatures of land, water, and sediment, water levels, vegetation, nutrient availability, among others, and the additional anthropogenic impacts such as land use change.

To calculate the net ecosystem carbon balance of wetland ecosystems, the more than 40 member research team synthesized data from almost 30 differently affected arctic, boreal, and temperate study sites across the globe. Simultaneous measurements of the ecosystem-atmosphere CO2 and CH4 fluxes in continental North America, Greenland, Europe, and Russia were used for analyses and modeling.

For sites with a full annual dataset of CO2 and CH4 fluxes, natural and converted sites were paired in all possible combinations within similar ecosystem types. „To determine the climate impact of the conversion, we used the difference of the net ecosystem carbon balance between the site pairs as series of consecutive annual mass pulses and integrated their effect on tropospheric greenhouse gas concentrations” explains GFZ researcher Sachs. The different radiative efficiencies and atmospheric residence times of the greenhouse gases were accounted for when the radiative forcing was calculated for the period from 2000 – 2100.

Ana Maria Roxana Petrescu et. al.: “Uncertain climate footprint of wetlands under human pressure” Proceedings of the National Academy of Science, PNAS Early Edition, 24.03. 2015,

http://www.pnas.org/cgi/doi/10.1073/pnas.1416267112

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>