Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Great Lakes Waterfowl Die-Offs: Finding the Source

New Experimental Data, Presented at APS Division of Fluid Dynamics Meeting, Moves Toward Finding a Better Model to Determine Where Birds Ate Toxic Fish

A deadly menace stalks the loons, gulls, and other water birds of the Great Lakes region: Type E botulism, a neuromuscular disease caused when birds eat fish infected with toxin-producing bacteria. Cases of the disease are on the rise, killing approximately 10,000 more waterfowl in 2007 than when it was first reported in 1963.

FAU/K.von Ellenrieder

Experimental measurement of the drag on a partially submerged waterbird in waves

To understand die-off origin and distribution, ocean engineers from the Florida Atlantic University (FAU) Institute for Ocean Systems Engineering in Dania Beach, Florida are using their expertise in experimental hydrodynamics. They have teamed with the U.S. Geological Survey to help develop a novel way of tracking waterfowl carcasses to determine the source of lethal outbreaks that infect fish eaten by waterbirds.

Monitoring the drift of waterbird carcasses associated with marine oil spills is another potential application. At the annual meeting of the American Physical Society's Division of Fluid Dynamics, held Nov. 24 ­ 26 in Pittsburgh, Pa., the team will present experimental measurements conducted to support the development of tracking software that will better determine the origin of waterbird die-offs.

The team performed towing tank experiments on submerging bird carcasses to determine the relevant drag coefficients. Together with wind and current data, these coefficients can be used in probabilistic source tracking simulations to calculate waterbird drift velocity and direction in order to reconstruct the likely routes that bird bodies may have traveled after a die-off.

Ultimately, this information will be compared to waterbird distribution and abundance revealed through aerial surveys to identify locations where waterbirds are likely exposed to botulinum toxin, explained Karl von Ellenrieder of FAU.

"Using the submerged frontal area of an ellipse, together with the frontal area of any submerged portions of the bird's head and neck gives good similarity across the range of speeds and submergence levels tested," von Ellenrieder said. "This is the first effort we are aware of to obtain estimates of force parameters operating on drifting waterbirds for incorporation into a current and waved-based tracking model."

The presentation, "Drag Coefficients of Drifting Waterbirds," is at 9:44 a.m. on Sunday, November 24, 2013 in the David L. Lawrence Convention Center, Room 407. ABSTRACT:

The 66th Annual Division of Fluid Dynamics Meeting will be held at David L. Lawrence Convention Center in Pittsburgh, Pennsylvania from November 24-26, 2013. More meeting information:
Any credentialed journalist, full-time or freelance, may attend the conference free of charge. Please email: and include "DFD Press" in the subject line. Workspace will be provided on-site during the meeting, and the week before news, videos and graphics will be made available on the Virtual Press Room:
The Division of Fluid Dynamics (DFD) of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website:

Jason Socrates Bardi | Newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>