Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the future of reefs belong to pulsating soft corals?

23.05.2013
ZMT scientists have made an interesting discovery in tropical coral reefs; soft corals of the Xeniidae family are becoming more and more widespread on these reefs. A peculiarity of these sessile animals is their pulsating movement – could this be the key to their success?
The feathery polyp tentacles of the xeniid soft corals open and shut like birds’ wings. These soft corals make pulsating movements – a rarity among sessile sea organisms. For a long time it was not known what purpose this continuous pulsation activity served – since it costs a lot of energy!

Recently, an Israeli research team of the University of Jerusalem published striking findings on this pulsating movement in the journal PNAS (Proceedings of the National Academy of Sciences USA). Reef ecologists of the Leibniz Center for Tropical Marine Ecology – ZMT have now commented on these findings in PNAS, placing them in a broader ecological context. They come to a surprising prognosis on how tropical coral reefs may develop in the future.

The Israeli researchers describe two main benefits of the pulsating movement for xeniid soft corals. With the aid of their symbiotic algae these tropical corals perform photosynthesis to gain energy. Here, oxygen is produced, which through the pulsating movement is effectively transported out of the coral tissue, where oxygen enrichment would inhibit the CO2 fixation. The movements also help ensure that nutrients in the water are better distributed to all polyps. According to calculations made by the Israeli researchers, the energy investment for the pulsating movement amounts to a maximum of 56% of the gained energy. That is an economically sound deal.

For comparison, the Bremen reef ecologists Christian Wild and Malik Naumann examined two additional organisms that likewise live on the seabed of coral reefs and also exhibit body movements: the pumping mangrove jellyfish Cassiopea and the contracting unicellular ciliate colony of the genus Zoothamnium. All of these have in common the symbiosis with microorganisms. The researchers came to the conclusion that the active body movements of all three organisms generate considerable advantages for their metabolism and food supply – and ultimately probably affect growth positively.

Yet, another effect of pulsation could be of great importance; during photosynthesis, reactive oxygen radicals are also produced, which are very harmful for the metabolism of the corals. In the course of ocean warming, oxygen radicals induce corals to release their symbiotic algae, in turn causing the corals to bleach and often to die. Through pulsation, the radicals are probably transported away effectively. The Bremen researchers consider it very likely that pulsating soft corals are therefore particularly resistant to coral bleaching.

Such robustness and the favourable energy balance create a significant competitive advantage for soft corals in the reef. “Worldwide, you can now often see that there is a transition in coral reefs from stony corals, which were once dominant, to soft corals,” said Christian Wild. “However, stony corals are important ecosystem engineers, which regulate the functioning of the entire reef via the production of limestone structures and the release of organic substances such as carbohydrates and mucus.” The Bremen researchers suggest that material cycles in the reef could shift significantly, with negative consequences for the valuable characteristics of coral reefs.

Published in:
Wild C., Naumann M.S. (2013) Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. Proceedings of the National Academy of Sciences USA

Contact:
Prof. Dr. Christian Wild
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800 – 114
Mail: christian.wildzmt-bremen.de

Dr. Malik Naumann
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800 – 119
Mail: malik.naumannzmt-bremen.de

Dr. Susanne Eickhoff | idw
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>