Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the future of reefs belong to pulsating soft corals?

23.05.2013
ZMT scientists have made an interesting discovery in tropical coral reefs; soft corals of the Xeniidae family are becoming more and more widespread on these reefs. A peculiarity of these sessile animals is their pulsating movement – could this be the key to their success?
The feathery polyp tentacles of the xeniid soft corals open and shut like birds’ wings. These soft corals make pulsating movements – a rarity among sessile sea organisms. For a long time it was not known what purpose this continuous pulsation activity served – since it costs a lot of energy!

Recently, an Israeli research team of the University of Jerusalem published striking findings on this pulsating movement in the journal PNAS (Proceedings of the National Academy of Sciences USA). Reef ecologists of the Leibniz Center for Tropical Marine Ecology – ZMT have now commented on these findings in PNAS, placing them in a broader ecological context. They come to a surprising prognosis on how tropical coral reefs may develop in the future.

The Israeli researchers describe two main benefits of the pulsating movement for xeniid soft corals. With the aid of their symbiotic algae these tropical corals perform photosynthesis to gain energy. Here, oxygen is produced, which through the pulsating movement is effectively transported out of the coral tissue, where oxygen enrichment would inhibit the CO2 fixation. The movements also help ensure that nutrients in the water are better distributed to all polyps. According to calculations made by the Israeli researchers, the energy investment for the pulsating movement amounts to a maximum of 56% of the gained energy. That is an economically sound deal.

For comparison, the Bremen reef ecologists Christian Wild and Malik Naumann examined two additional organisms that likewise live on the seabed of coral reefs and also exhibit body movements: the pumping mangrove jellyfish Cassiopea and the contracting unicellular ciliate colony of the genus Zoothamnium. All of these have in common the symbiosis with microorganisms. The researchers came to the conclusion that the active body movements of all three organisms generate considerable advantages for their metabolism and food supply – and ultimately probably affect growth positively.

Yet, another effect of pulsation could be of great importance; during photosynthesis, reactive oxygen radicals are also produced, which are very harmful for the metabolism of the corals. In the course of ocean warming, oxygen radicals induce corals to release their symbiotic algae, in turn causing the corals to bleach and often to die. Through pulsation, the radicals are probably transported away effectively. The Bremen researchers consider it very likely that pulsating soft corals are therefore particularly resistant to coral bleaching.

Such robustness and the favourable energy balance create a significant competitive advantage for soft corals in the reef. “Worldwide, you can now often see that there is a transition in coral reefs from stony corals, which were once dominant, to soft corals,” said Christian Wild. “However, stony corals are important ecosystem engineers, which regulate the functioning of the entire reef via the production of limestone structures and the release of organic substances such as carbohydrates and mucus.” The Bremen researchers suggest that material cycles in the reef could shift significantly, with negative consequences for the valuable characteristics of coral reefs.

Published in:
Wild C., Naumann M.S. (2013) Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. Proceedings of the National Academy of Sciences USA

Contact:
Prof. Dr. Christian Wild
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800 – 114
Mail: christian.wildzmt-bremen.de

Dr. Malik Naumann
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800 – 119
Mail: malik.naumannzmt-bremen.de

Dr. Susanne Eickhoff | idw
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>