Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the future of reefs belong to pulsating soft corals?

23.05.2013
ZMT scientists have made an interesting discovery in tropical coral reefs; soft corals of the Xeniidae family are becoming more and more widespread on these reefs. A peculiarity of these sessile animals is their pulsating movement – could this be the key to their success?
The feathery polyp tentacles of the xeniid soft corals open and shut like birds’ wings. These soft corals make pulsating movements – a rarity among sessile sea organisms. For a long time it was not known what purpose this continuous pulsation activity served – since it costs a lot of energy!

Recently, an Israeli research team of the University of Jerusalem published striking findings on this pulsating movement in the journal PNAS (Proceedings of the National Academy of Sciences USA). Reef ecologists of the Leibniz Center for Tropical Marine Ecology – ZMT have now commented on these findings in PNAS, placing them in a broader ecological context. They come to a surprising prognosis on how tropical coral reefs may develop in the future.

The Israeli researchers describe two main benefits of the pulsating movement for xeniid soft corals. With the aid of their symbiotic algae these tropical corals perform photosynthesis to gain energy. Here, oxygen is produced, which through the pulsating movement is effectively transported out of the coral tissue, where oxygen enrichment would inhibit the CO2 fixation. The movements also help ensure that nutrients in the water are better distributed to all polyps. According to calculations made by the Israeli researchers, the energy investment for the pulsating movement amounts to a maximum of 56% of the gained energy. That is an economically sound deal.

For comparison, the Bremen reef ecologists Christian Wild and Malik Naumann examined two additional organisms that likewise live on the seabed of coral reefs and also exhibit body movements: the pumping mangrove jellyfish Cassiopea and the contracting unicellular ciliate colony of the genus Zoothamnium. All of these have in common the symbiosis with microorganisms. The researchers came to the conclusion that the active body movements of all three organisms generate considerable advantages for their metabolism and food supply – and ultimately probably affect growth positively.

Yet, another effect of pulsation could be of great importance; during photosynthesis, reactive oxygen radicals are also produced, which are very harmful for the metabolism of the corals. In the course of ocean warming, oxygen radicals induce corals to release their symbiotic algae, in turn causing the corals to bleach and often to die. Through pulsation, the radicals are probably transported away effectively. The Bremen researchers consider it very likely that pulsating soft corals are therefore particularly resistant to coral bleaching.

Such robustness and the favourable energy balance create a significant competitive advantage for soft corals in the reef. “Worldwide, you can now often see that there is a transition in coral reefs from stony corals, which were once dominant, to soft corals,” said Christian Wild. “However, stony corals are important ecosystem engineers, which regulate the functioning of the entire reef via the production of limestone structures and the release of organic substances such as carbohydrates and mucus.” The Bremen researchers suggest that material cycles in the reef could shift significantly, with negative consequences for the valuable characteristics of coral reefs.

Published in:
Wild C., Naumann M.S. (2013) Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. Proceedings of the National Academy of Sciences USA

Contact:
Prof. Dr. Christian Wild
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800 – 114
Mail: christian.wildzmt-bremen.de

Dr. Malik Naumann
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800 – 119
Mail: malik.naumannzmt-bremen.de

Dr. Susanne Eickhoff | idw
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>