Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest health versus global warming: Fuel reduction likely to increase carbon emissions

21.12.2011
Forest thinning to help prevent or reduce severe wildfire will release more carbon to the atmosphere than any amount saved by successful fire prevention, a new study concludes.

There may be valid reasons to thin forests – such as restoration of forest structure or health, wildlife enhancement or public safety – but increased carbon sequestration is not one of them, scientists say.

In research just published in Frontiers in Ecology and the Environment, Oregon State University scientists conclude that even in fire-prone forests, it’s necessary to treat about 10 locations to influence fire behavior in one. There are high carbon losses associated with fuel treatment and only modest savings in reducing the severity of fire, they found.

“Some researchers have suggested that various levels of tree removal are consistent with efforts to sequester carbon in forest biomass, and reduce atmospheric carbon dioxide levels,” said John Campbell, an OSU research associate in the Department of Forest Ecosystems and Society. “That may make common sense, but it’s based on unrealistic assumptions and not supported by the science.”

A century of fire suppression in many forests across the West has created a wide range of problems, including over-crowded forests, increased problems with insect and pathogen attack, greater risk of catastrophic fire and declining forest health.

Forest thinning and fuel reduction may help address some of those issues, and some believe that it would also help prevent more carbon release to the atmosphere if it successfully reduced wildfire.

“There is no doubt you can change fire behavior by managing fuels and there may be other reasons to do it,” said Mark Harmon, holder of the Richardson Chair in Forest Science at OSU. “But the carbon does not just disappear, even if it’s used for wood products or other purposes. We have to be honest about the carbon cost and consider it along with the other reasons for this type of forest management.”

Even if wood removed by thinning is used for biofuels it will not eliminate the concern. Previous studies at OSU have indicated that, in most of western Oregon, use of wood for biofuels will result in a net loss of carbon sequestration for at least 100 years, and probably much longer.

In the new analysis, researchers analyzed the effect of fuel treatments on wildfire and carbon stocks in several scenarios, including a single forest patch or disturbance, an entire forest landscape and multiple disturbances.

One key finding was that even a low-severity fire released 70 percent as much carbon as did a high-severity fire that killed most trees. The majority of carbon emissions result from combustion of surface fuels, which occur in any type of fire.

The researchers also said that the basic principles in these evaluations would apply to a wide range of forest types and conditions, and are not specific to just a few locations.

“People want to believe that every situation is different, but in fact the basic relationships are consistent,” Campbell said. “We may want to do fuel reduction across much of the West, these are real concerns. But if so we’ll have to accept that it will likely increase carbon emissions.”

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Mark Harmon | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>